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The Gravity Recovery and Climate Experiment (GRACE) is a dedicated

spaceborne mission to map the Earth’s gravity field with unprecedented accuracy.

The GRACE mission is planned to launch in 2001, for a lifetime of approximately

5 years. It consists of two satellites, co-orbiting in nearly polar orbit, at

approximately 300-500 km altitude, separated by 100-500 km along track.

Primary measurements are the range change between the two satellites, which

represents the gravity perturbation differences between the two locations. These

range changes are measured by a high accuracy microwave raging system. To

detect the non-gravitational perturbations, which also affect the range change,

three axis accelerometers are used.
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In this study, full numerical simulations were performed to evaluate the

gravity recovery accuracy, and to determine sensitivity of gravity estimation to

mission and design parameters. The measurement and dynamic model equations

were derived and presented along with the description of the simulation

procedure. The error models on two major instruments, the inter-satellite ranging

system and accelerometer, were described and their effect on the estimation

accuracy were discussed. Series of extensive simulations were performed to

analyze the impact of the various simulation parameters, which included the orbit

parameters, measurement types, and so on. Comprehensive error models made it

possible to perform realistic analyses.

To the extent that the error sources assumed in the simulations represent

those actually encountered during the mission, the simulation results will predict

the performance of the GRACE mission. The GRACE mission is expected to

improve the current knowledge of the Earth gravity field by order of magnitude.

The geoid error level is expected to be less than 1cm to spherical harmonic degree

70.
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1 INTRODUCTION

1.1 BACKGROUND

The accurate determination of the Earth gravity field is essential for a

variety of geophysical applications, including oceanography, hydrology,

glaciology, geodesy, and the solid Earth science. Among many methods to

measure the Earth’s gravity field, the use of satellite data has become critically

important. This satellite method is based on the fact that the orbit of any satellite

in a near Earth orbit is dependent on the globally integrated effect of the mass

distributions and movements in the Earth system. By observing the motion of

such satellites, the Earth gravity field can be estimated. One of the objectives to

improve the gravity field is to improve satellite orbit estimations since large

portion of the orbit accuracy is limited by the gravity model accuracy.

Since the launch of Sputnik 1 in 1957, the tracking data of the orbits have

been used to develop Earth gravity field models [77]. Those tracking data include

optical observation, laser tracking, Doppler tracking data, and so on. These

satellite tracking data have achieved a significant improvement on the knowledge

of the Earth gravity field. With the operation of the Global Positioning System

(GPS), a high-low satellite-to-satellite tracking method, tracking between the GPS

satellite and a low earth satellite, began to be used for the satellite tracking and the

gravity field improvement in 1990's. However, due to the attenuation of the

gravity signal with height, these conventional methods do not provide enough

information on the short wavelength gravity signals and the improvement is
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limited to the long and medium wavelength signals. Those satellites were not

intended for the gravity estimation and even the long wavelength accuracy is

limited. To obtain a significant improvement on the short wavelength accuracy as

well as the long wavelength accuracy, dedicated satellite gravity missions have

been considered since 1960's [69]. Those proposed missions can be classified into

two broad categories, low-low satellite-to-satellite tracking (SST) and satellite

gravity gradiometry (SGG).

The low-low satellite-to-satellite tracking utilizes differential tracking of

two low altitude satellites and thereby measures orbit perturbations. This range

change can be measured by an accurate microwave or laser raging system.

Accelerometers are required to measure the surface force effect, e.g. atmospheric

drag and radiation pressure, on the satellite orbit. The gravity gradiometry mission

determines the local gravity gradient by measuring the differences in acceleration

of two masses within a single spacecraft. Comparison studies between these two

missions were performed by many investigators. The Committee on Earth Gravity

from Space of the National Research Council examined the advantage of each

mission by simulation studies [11,49]. While the low-low SST would provide

accurate long and mid wavelength model, the gravity gradiometry would provide

accurate short wavelength model, but its long wavelength accuracy is lower than

the low-low SST. Two missions are thus complementary to each other.

In the early 1980's the National Aeronautics and Space Administration

(NASA) proposed a Geopotential Research Mission (GRM) to globally determine

high precision gravitational and magnetic fields of the Earth. It consisted of two
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nearly identical satellites in a low altitude of 160 km [35], and the orbit was to be

a near circular polar orbit. The relative range-rate between the two satellites was

to be measured by microwave ranging system [35,44,52]. The orbit effects due to

non-gravitational forces such as atmospheric drag and solar radiation pressure

were to be controlled by means of a Disturbance Compensation System

(DISCOS) that appropriately fires thrusters to offset the drag effects [1]. Due to

its low altitude and large fuel consumption of the DISCOS, the proposed mission

lifetime was six months. In 1990's, two low-low SST missions were proposed.

The Gravity And Magnetic Earth Surveyor (GAMES) mission [77] consisted of a

primary satellite with a laser for tracking a passive second satellite and a GPS

receiver for orbit determination of the primary satellite. The primary satellite

would carry an accelerometer for measuring non-gravitational forces. The Gravity

Recovery and Climate Experiment (GRACE) mission [69] utilized a microwave

tracking system for measuring the relative range between two identical satellites.

Each satellite carries a GPS receiver and an accelerometer.

Since 1980's, several satellite missions have been proposed for the gravity

gradiometry. The European Space Agency (ESA) proposed the ARISTOTELES

mission [4], which was to carry four accelerometers in a non drag-compensated

spacecraft. The NASA Super-conducting Gravity Gradiometer (SGG) mission

[50] was based on more sensitive cryogenic instrument, to be flown in a drag-

compensated spacecraft. It was to carry a six-axis high precision gradiometry. The

GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission [75]

has been recently proposed by the ESA. This concept is a combination of a three-
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axis satellite gravity gradiometry and high-low satellite-to-satellite tracking. This

is one of four candidate Earth Explorer Missions defined by ESA that are

awaiting selection and, if selected, it will fly in 2004.

1.2 GRACE MISSION OVERVIEW

In March 1998, the NASA announced plans to fly the Gravity Recovery

and Climate Experiment (GRACE) mission, a low-low satellite-to-satellite

tracking (SST) mission. It was selected as the second Earth System Science

Pathfinder (ESSP) mission and is planned to be launched in June 2001 with a

five-year lifetime. It is a joint project between the NASA and the Deutsches

Zentrum für Luft und Raumfart (DLR) [19]. The NASA Jet Propulsion

Laboratory (JPL) leads the development of the science instrument and satellite

system in partnership with Space System/Loral (SS/L) and Dornier

Satellitensysteme (DSS). The German Space Operation Center (GSOC) will take

a responsibility of operation of the GRACE satellites with its ground tracking

facilities. The observation data collected by GSOC will be processed in a

cooperative approach by JPL, University of Texas / Center for Space Research

(UT/CSR), and GeoForschungsZentrum (GFZ) in Germany.

The GRACE mission concept is illustrated in Figure 1.1. The orbit of any

satellite in a near Earth orbit is dependent on the globally integrated effect of the

mass distributions and movements in the Earth system. The orbits of the two

satellites, sensing these effects at slightly different phases, will be perturbed

differentially [19]. This difference in perturbations is manifested in the inter-
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satellite range changes. The GRACE microwave ranging instrument will provide

very accurate measurements of the range changes. By making these differential

measurements, the higher frequency content of the gravitational signals will be

amplified; thus enabling significant improvement in the estimates of the higher

resolution features of the Earth gravity field. Since the two satellites are separated

in orbit by 220±50 km along-track, the errors due to media effects are minimized

as compared to space-based or ground-based tracking. This also ensures the

homogeneity of data quality. The orbit inclination will be between 87° and 90° to

maximize global coverage. The altitude will be no more than 500 km and the

altitude will decrease to 300 km at the end of the five-year mission lifetime. This

relatively low altitude makes it possible to detect high frequency gravity signals.

ACC ACC

Mass Anomaly

GRACE1 GRACE2

GPS Satellites

GPS Ground Station

Microwave Ranging
Measurement

Figure 1.1 GRACE mission concept
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In order to measure the inter-satellite range change precisely, the GRACE

satellites will use a dual-one way ranging system. With identical transmission and

reception subsystems, each satellite transmits the carrier signals to another

satellite. The received signals from the two satellites are sent to ground stations

and then combined. The frequency fluctuations due to oscillator instability have

nearly equal and opposite effects on each satellite’s measurement. Therefore, in

the proposed approach combining those measurements cancels the oscillator

errors effectively. The cancellation would be perfect if it were not for the

separation between two satellites and the effectiveness of this cancellation

decreases as the separation distance increases. With 1 ms time-of-flight, which

corresponds to a 300 km separation distance, this dual one-way ranging system

would remove the oscillator noise at frequency lower than 1 KHz. Another error

source is the signal delay due to ionosphere, and two frequency signals, K and Ka

bands, will be used to correct for this delay. The accuracy of the inter-satellite

range-rate is expected to be better than 1 µm/s.

The satellite orbit is affected not only by the gravitational accelerations

but also by non-gravitational accelerations, e.g. atmospheric drag and radiation

pressure, and its effect must be accurately measured and corrected to utilize the

gravitational information in the range change measurements. For this purpose, the

GRACE satellites carry high precision three axis accelerometers, which are

located at the mass center of each satellite to detect the non-gravitational

accelerations only. The SuperSTAR accelerometer developed by the French space
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agency ONERA will be used and the design accuracy is about 0.1 nm/s2 for 10 Hz

samples.

Each satellite also carries a geodetic quality GPS receiver to ensure that

the orbits for the satellites can be continuously and accurately determined and that

the gravity field estimates can be correctly registered in a terrestrial reference

frame. Since the individual trajectories are non-observable by the SST

measurements only, the GPS measurements are necessary to eliminate that

singularity. Comparing with the GRM mission described in the previous section,

use of the GPS measurement solves two critical issues unresolved in 1980's,

accurate time tagging and geo-locating the observables [69]. This can be solved

by collecting GPS data concurrently with the inter-satellite range data. The

accurate orbits and clock synchronization can eliminate the unsolved issues.

A dedicated Laser Retro Reflector (LRR) on each satellite allows an

external calibration of the onboard GPS system for orbit determination [19]. Laser

ranging from the ground can also be used in conjunction with the GPS to support

precise orbit determination and gravity field recovery.

Two GRACE satellites have an identical configuration, and Figure 1.2

shows the GRACE satellite configuration and its instrument accommodation. The

length and mass are 2.8 m and 420 kg, respectively, but these values are subject to

change.
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Figure 1.2 GRACE satellite configuration
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1.3 PREVIOUS STUDIES

Since the concept of the low-low satellite-to-satellite tracking was first

proposed by Wolf [82], there have been many studies showing that a significant

improvement can be achieved by using the low-low SST. Several studies based on

analytic theory have been performed to evaluate the performance of the SST

mission. These studies derived a SST range-rate as a linear function of

geopotential coefficients. Kaula [34] and Wagner [79] used Lagrangian

perturbation theory to show the feasibility of estimating gravity coefficients from

simulated range-rate observations. Colombo [9] and Mackenzie [45,46] derived

the range-rate equation using Hill's equation, which describes a near circular

satellite motion due to perturbation.

Some of studies focused on the instruments of the GRM mission. Studies

by Pisacane [52], MacArthur [44], and Yionoulis [84] described the inter-satellite

range-rate system and the drag compensation system (DISCOS). Schutz [63,64]

studied the range and range-rate signal characteristics using realistic simulation

models. Many of studies, e.g. Antreasian [1], were directed on the DISCOS

design and analysis. A report by Keating [35] summarized the overall aspect of

the GRM mission.

Until the 1990's, the estimation of a large number of gravity coefficients

had been a challenge, and many algorithms were studied to reduce the

computational requirements. One method was to utilize a sparse structure of the

estimation matrix when the satellite orbit meets a special condition, a repeat orbit.

In order to meet this requirement, a large amount of thrust fuel is required,
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especially at the low altitude, below 400km, and this requirements derives a short

mission lifetime, e.g. 6 months. Advent of powerful super computer has enabled

the estimation of the large gravity coefficients with a standard dense estimation

matrix. Sharma [65] studied more realistic cases by using full numerical

simulations without the orbit repeat restriction. His study was a part of

demonstration study on the GRACE mission.

Most of the previous studies focused on the estimation of the gravity

coefficients rather than noise modeling. Usually, a simple white noise was applied

for the instrument noise. Use of the full numerical simulations, instead of analytic

method, enables to implement more comprehensive error models. This study

focused more on the instrument modeling than the previous studies did, and the

comprehensive modeling makes it possible to obtain more realistic results.

1.4 DISSERTATION OBJECTIVES

The principal objective of this study was to provide the information for the

satellite design and orbit selections through comprehensive numerical

simulations. For this purpose, the following studies were performed. The first part

includes development and explanation of the mathematical concepts for the

GRACE observations, and development of methods for extracting gravity field

solution from these data. The second part includes the development of simulation

models of major instrument errors and the analysis of their effects on the
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observations. Third part includes certain trade studies on the effects of orbit

selection and the measurement processing methodology.

The equations for the observables and mathematical tools for explaining

the observations and their sensitivities are derived. Correction algorithms for

processing actual phase measurements are presented. Most of the significant error

models and their implementations on the simulation are described. A modified

version of the MSODP (Multi Satellite Orbit Determination Program), a precision

orbit determination program developed at the UT/CSR [57], was used to estimate

satellite trajectories and gravity field coefficients in the simulation. Extensive

numerical simulations were performed to quantify the effect of various error

sources on the gravity estimation. Sensitivity studies were performed as well by

changing orbit parameters. To discuss the simulation results, degree error

variances, geoid error plots, and PSD (Power Spectral Density) plots from these

simulations are presented. The results of the study will enable assessment of the

estimation accuracy for the gravity model coefficients.

1.5 DISSERTATION OUTLINE

Chapter 2 describes the mathematical formulation for processing the GPS

and SST data. The general formulations of the satellite-to-satellite tracking (SST)

observables, which may be applied to the high-low tracking as well as the low-

low tracking, are described. The GPS measurement models include phase

measurement processing, double difference measurements, and measurement

partial derivatives. The SST measurement models describe how the oscillator
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instability is reduced by the dual-one way ranging. The measurement partials

implemented in the MSODP [57] are presented as well. The batch estimation

algorithm is presented with the specification of estimation parameters.

Chapter 3 describes the models and procedures implemented for the

numerical simulations. Force models, which include gravity, atmospheric drag,

and other thrust and surface force models, are presented. Empirical parameters

used to treat unmodeled force and measurement effects are described. The

simulation procedure to generate and to process simulated measurements is

presented with the list of simulation parameters applied. In addition to the full

numerical simulations, a semi-analytic method was used to overcome computing

time limitations. This method utilizes an analytic mapping function derived by

Jekeli [29], but it was modified by Bettadpur [5,8] to apply simulated

measurements. This formulation is summarized along with the prediction

procedure.

Chapter 4 describes the dual one-way ranging, or SST measurement, error

models. Several important error sources identified by the JPL GRACE team [71]

are included. The procedure to derive the oscillator noise from the Allan variance

of the oscillator is discussed. Another important error source, the system noise, is

discussed as well. The multipath effect on the SST measurement is described with

the formulations and the simulated attitude error time series, which governs the

multipath error level. This chapter also describes the correction algorithm to

convert a phase-derived range to an instantaneous range. The effect of time tag

error is analyzed.
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Chapter 5 describes the accelerometer error models, which is one of the

important error sources in the GRACE mission. The description of generating

simulated accelerometer measurements with various error sources is followed by

the description of processing those measurements with estimates of the

accelerometer scale factors and biases. Numerical simulations were performed to

identify the effect of individual error sources on the gravity solutions. Some

design issues related to the accelerometer are discussed as well.

Chapter 6 discusses parameter studies, e.g. orbit selection and

measurement type, in consideration of their effect on the gravity accuracy. The

orbit selection study includes orbit inclination, altitude, and separation distance.

The effect of altitude on the ground track repeat and ultimate observability are

studied as well. The variations of the instrument noise level due to the altitude and

separation variations were considered. The range measurement is compared to the

range-rate measurement by spectrum analyses and some numerical simulations.

The expected gravity recovery accuracy is presented with typical simulation

results.

Chapter 7 summaries this study and presents conclusions and

recommendations for further studies. Appendix A describes an analytic form of

the low-low SST equations by using Hill’s equations, and it provides insight on

the behavior of the SST observation and on the empirical parameterizations.

Appendix B describes the details on the simulation procedure. Appendix C

summarized the definitions of the power spectral density and degree variances

used in this study.
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2 SATELLITE-TO-SATELLITE TRACKING MODELS

2.1 INTRODUCTION

The mathematical formulations for processing the SST and GPS data are

described in this chapter. The mathematical formulations of the satellite-to-

satellite tracking (SST) measurements are described, including both high-low and

low-low measurements. The former represents the measurements between the

GPS and GRACE satellites and the latter represents the direct measurements

between the two GRACE satellites. However, the abbreviation SST represents the

low-low satellite-to-satellite tracking in all other parts of this study.

The GRACE mission uses the dual one-way K-band ranging system for

precise inter-satellite phase measurements. This system combines the phase

measurements from each of the two satellites to remove the effect of oscillator

instability. This procedure yields the low-low range and range-rate observables,

which are the primary observations of the GRACE mission. The SST and GPS

measurement models are described and the partial derivatives are derived. The

partial derivatives map the measurements to epoch for the estimation of the

parameters. The implementation of these measurements is described along with

the measurement partials.
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Figure 2.1 Schematic block diagram for the microwave ranging system and

the GPS receivers [20]

A block diagram of the microwave ranging system and the GPS receivers

are presented in Figure 2.1 [20]. The two GRACE satellites differ only in the

radio frequencies for communication with the ground and in the microwave

frequencies for the inter-satellite link. The ultra stable oscillator (USO) drives

both the microwave ranging (SST) and the GPS receivers. Two microwave

frequencies, K (24GHz) and Ka (32GHz), are used to correct the ionosphere

effect.

The batch estimation algorithm, as implemented in the MSODP (Multi

Satellite Orbit Determination Program) [57], was used to estimate satellite

trajectories and gravity field coefficients from the measurements. The overview of

the estimation algorithm is described with the classification of estimation

parameters.



16

2.2 SATELLITE-TO-SATELLITE MEASUREMENT PROCESSING

2.2.1 Dual One-Way Ranging Overview

To minimize the effect of oscillator frequency instability on the SST

measurement, the GRACE satellites use the dual one-way microwave ranging

system to measure the low-low satellite-to-satellite range. Each GRACE satellite

transmits K/Ka band microwave signals to the other satellite and receives that

satellite's signals. Combination of the received signal and the reference signal that

is equivalent to the transmit signal, generates a phase measurement. A phase-

locked loop algorithm is used to detect the phase shift due to the relative position

changes [71]. The phase measurements received by each satellite are transmitted

to the ground station and then combined in ground processing. Since both

satellites’ phase measurements contain nearly identical oscillator drift noises,

combining the two phase measurements effectively eliminates the oscillator

instability effect on the range measurement.  Figure 2.2 illustrates the oscillator

noise cancellation by the dual one-way ranging system. The oscillator noise of

one satellite is contained in the measurements of both satellites, and their

sampling times are only different by the time-of-flight, less than 1ms.

Differencing of these two phases cancels the long and medium period parts of the

oscillator noise. Only the high frequency noise, whose period is shorter than 1ms,

remains after the dual one-way ranging measurement. This combined phase

measurement is converted to the biased range between the two satellites and

treated as the fundamental measurement of the GRACE mission.
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Figure 2.2 Illustration of oscillator noise reduction

by the dual one-way ranging system.

The actual dual one-way phase measurements will be pre-processed before

the gravity estimation process. The pre-processing includes measurement time tag

corrections and biased-range conversion. Figure 2.3 shows the pre-processing

procedure of the dual one-way range measurements. The pre-processing algorithm

is under development and its full aspect is not covered in this study. Two issues

concerning the pre-processing are covered in this study: time-tag correction and

instantaneous range correction. The following is the overview of the pre-

processing and these two issues.
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SST1-K SST2-K SST1-Ka SST2-Ka

Dual One-Way
Range K

Dual One-Way
Range Ka

Dual One-Way Range
(iono-free)

 Instantaneous
 Correction

Bised Instantanous Range

GPS

IGS

Time TagTime-Tag Correction

Phase Obs

Nominal OrbitLowpass Filtering

Figure 2.3 Pre-processing procedure of the dual one-way range

measurements

The phase measurement of each satellite will be sampled at a specified

time, assumed to be close to a common nominal time. Due to the GRACE clock

(oscillator) error in each satellite, the actual measurement time is different from

the nominal time. With the GPS measurements, the clock error can be corrected to

a certain level. This is called time-tag correction. Then, each measurement will be

interpolated to its value at the nominal time. These two time-tag corrected phase

measurements will be combined into a dual one-way phase measurement of the

nominal time and converted to the biased-range. In the IGS network, the time-tag

difference is stable, and is estimated accurately to better than 70 pico second over
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a day after a linear term is removed [71]. Since the time-tag correction algorithm

is under development, its full aspect is not covered in this study.

This biased-range conversion assumes an identical time-of-flight for the

two phase measurements. The two phase measurements represent the phases

received at the same nominal time but their transmit times are different. These

different transmit times imply different time-of-flights. The actual range

measurement derived from the dual one-way phase range measurements contains

both of these different time-of-flights. Since the two satellites are always moving

nearly in the same direction, the time-of-flight of the phase signal from the

leading satellite to the trailing satellite is shorter than the time-of-flight of the

opposite signal. By using the GPS data to determine the two satellites' states, the

actual phase-derived range can be accurately converted into the instantaneous

range. The error analysis in Section 4.5 shows that the range error during this

instantaneous range conversion can be much lower than the required SST

measurement noise level 10 µm [19].

The pre-processed measurement will be assumed to be time-tag corrected

and to represent an instantaneous range at a nominal measurement time in the

simulation. This instantaneous range model is used to estimate the satellite orbits

and gravity coefficients in the simulations. The SST noise models, described in

Chapter 4, represent the impact of several error sources on the instantaneous

range. The error level due to the time-tag correction inaccuracy is discussed in

Section 4.4. The algorithm of the instantaneous correction and its error level are

discussed in Section 4.5.
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2.2.2 Dual One-Way Ranging Formulations

The single frequency carrier phase measurement between the two GRACE

satellites at a specified nominal time t can be modeled as follows

ϕ ϕ ϕ ε1
2

1 1 1
2

1 1
2

1
2

1
2

1
2t t t t t t N I d+( ) = +( ) − +( ) + + + +∆ ∆ ∆ (2.1)

ϕ ϕ ϕ ε2
1

2 2 2
1

2 2
1

2
1

2
1

2
1t t t t t t N I d+( ) = +( ) − +( ) + + + +∆ ∆ ∆ (2.2)

where

ϕ1
2

1t t+( )∆ = differential phase measurement at SST1

ϕ2
1

2t t+( )∆ = differential phase measurement at SST2

 t = nominal reception time

∆t1, ∆t2 = time tag error of SST1 and SST2

ϕ1 1t t+( )∆ = SST1 receiver's reference phase

ϕ 2
1t t+( )∆ = received phase transmitted by SST2

ϕ2 2t t+( )∆ = SST2 receiver's reference phase

ϕ 1
2t t+( )∆ = received phase transmitted by  SST1

N1
2, N2

1 = integer ambiguities

I1
2, I2

1 = phase shift due to ionosphere

d1
2 , d2

1 = phase  shift due to  neutral atmosphere,

    instrument, offset,  multipath, etc.

ε1
2 , ε2

1 = random measurement noise
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where SST1 and SST2 represent the leading and trailing satellites, respectively.

The time tag errors ∆t1 and ∆t2 represent the time difference between the nominal

time and the actual reception time. The carrier frequency band is either K

(26GHz) or Ka (32GHz) band. The unit of the phase measurement is cycle. Figure

2.4 shows the relationship between the two differential phase observables.

 SST2

 +  +

ϕ 1
2t t+( )∆

ϕ 2
1t t+( )∆

ϕ2
1

2t t+( )∆ϕ1
2

1t t+( )∆

 SST1

ϕ τ1 2 2
1t t+ −( )∆

ϕ τ2 1 1
2t t+ −( )∆

Θ t( )
Figure 2.4 Phase observables of the dual one-way ranging system

Each phase consists of the reference phase ϕ i , which corresponds to the

constant reference frequency, and the phase error δϕ i  due to oscillator drift or

frequency instability as

ϕ ϕ δϕ1 1 1t t t( ) = ( ) + ( ) (2.3)

ϕ ϕ δϕ2 2 2t t t( ) = ( ) + ( ) (2.4)

Also the received phase ϕ i  can be represented with the transmit phase ϕ i  at the

transmit time as follows
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ϕ ϕ τi
i j

it t( ) = −( ) (2.5)

where τ j
i  is the time-of-flight from the i-th satellite to the j-th satellite. The time-

of-flight of the two phase signals are different from each other since two satellites

are moving. Substitution of (2.3), (2.4), and (2.5) into (2.1) and (2.2) yields

ϕ ϕ δϕ ϕ τ δϕ τ1
2

1 1 1 1 1 2 1 1
2

2 1 1
2t t t t t t t t t t+( ) = +( ) + +( ) − + −( ) − + −( )∆ ∆ ∆ ∆ ∆

       + + + +N I d1
2

1
2

1
2

1
2ε (2.6)

ϕ ϕ δϕ ϕ τ δϕ τ2
1

2 2 2 2 2 1 2 2
1

1 2 2
1t t t t t t t t t t+( ) = +( ) + +( ) − + −( ) − + −( )∆ ∆ ∆ ∆ ∆

       + + + +N I d2
1

2
1

2
1

2
1ε (2.7)

Adding these two phase measurements makes a dual one-way ranging phase

measurement Θ t( ) :

Θ ∆ ∆t t t t t( ) ≡ +( ) + +( )ϕ ϕ1
2

1 2
1

2

        = +( ) − + −( ) + +( ) − + −( )ϕ ϕ τ ϕ ϕ τ1 1 2 1 1
2

2 2 1 2 2
1t t t t t t t t∆ ∆ ∆ ∆

        + +( ) − + −( ) + +( ) − + −( )δϕ δϕ τ δϕ δϕ τ1 1 2 1 1
2

2 2 1 2 2
1t t t t t t t t∆ ∆ ∆ ∆

        + +( ) + +( ) + +( ) + +( )N N I I d d1
2

2
1

1
2

2
1

1
2

2
1

1
2

2
1ε ε (2.8)

The phase at t ti+ ∆  can be linearized around the phase at the nominal time t as

ϕ ϕ ϕi i i i it t t t t+( ) ≈ ( ) + ( )∆ ∆˙ (2.9)
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The phase at the transmit time t ti j
i+ −∆ τ  can be linearized around the phase at

the reception time t as

ϕ τ ϕ ϕ ϕ τi j j
i

i i j i j
it t t t t t+ −( ) ≈ ( ) + ( ) − ( )∆ ∆˙ ˙ (2.10)

By the same way, the phase error can be linearized as

δϕ δϕ δϕi i i i it t t t t+( ) ≈ ( ) + ( )∆ ∆˙

δϕ τ δϕ δϕ δϕ τi j j
i

i i j i j
it t t t t t+ −( ) ≈ ( ) + ( ) − ( )∆ ∆˙ ˙ (2.11)

The rate of phase change, ϕ̇ i t( ) , is equivalent to the constant nominal frequency

fi . The rate of phase error change, δϕ̇ i t( ) , is equivalent to the frequency error,

δf ti( ). With these substitutions, the phases and phase errors can be linearized as

follows

ϕ ϕi i i i it t t f t+( ) ≈ ( ) +∆ ∆

ϕ τ ϕ τi j j
i

i i j i j
it t t f t f+ −( ) ≈ ( ) + −∆ ∆ (2.12)

δϕ δϕ δi i i i it t t f t t+( ) ≈ ( ) + ( )∆ ∆

δϕ τ δϕ δ δ τi j j
i

i i j i j
it t t f t t f t+ −( ) ≈ ( ) + ( ) − ( )∆ ∆ (2.13)

Replacing the phases in (2.8) with (2.12) and (2.13) cancels the phases ϕ i t( )  and

the phase errors δϕ i t( ) . Since the same phase errors are in the both satellites’

differential phase signals ϕ1
2 and ϕ2

1  with different signs, they are canceled after

combining the two phase signals. However, the phase errors are not perfectly
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canceled due to the transmit and reception time difference, i.e. the time-of-flight

τ. This is shown in the second line of (2.8). The dual one-way ranging phase

measurement becomes a function of the time-of-flight and other error terms as

Θ t f f f f( ) = +( ) + +( )1 2
1

2 1
2

1 2
1

2 1
2τ τ δ τ δ τ

        + −( ) −( ) + −( ) −( )f f t t f f t t1 2 1 2 1 2 1 2∆ ∆ ∆ ∆δ δ

        + +( ) + +( ) + +( ) + +( )N N I I d d1
2

2
1

1
2

2
1

1
2

2
1

1
2

2
1ε ε (2.14)

The first term represents the true phase measurement and the second term does

the errors due to the phase errors. The third term is due to the time tag errors and

the fourth term is the coupling between the phase error and the time tag error. As

mentioned earlier, the time-of-flights, τ 2
1 and τ 1

2 , are slightly different. This

difference is about 0.05 µs and much smaller than the time-of-flight τ j
i  itself, 1

ms.  An algorithm was developed to compute a time-of-flight τ corresponding to

the instantaneous inter-satellite range at nominal time t from these two time-of-

flights as follows

f f f f tTOF1 2
1

2 1
2

1 2τ τ τ+( ) ≈ +( ) − ( )∆Θ (2.15)

The details of the instantaneous range correction term ∆ΘTOF t( ) are covered in

Section 4.5. Using the GPS measurements, the time-tag errors can be minimized.

After pre-processing for the time-tag correction, the time tag errors become much

smaller than the other terms and ignored in this section to evaluate an overall
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performance of the dual one-way ranging system. The details of the range error

due to the time tag errors are described in Section 4.4.

The inter-satellite biased range is computed from the dual one-way phase

of (2.14) by multiplying the speed of light c and then by dividing the sum of the

two carrier frequencies, f f1 2+( ) :

R t
c t

f f
( ) = ( )

+
Θ

1 2

        = ( ) − ( ) + +
+

ρ ρ δ δ τt t c
f f

f fTOF∆ 1 2

1 2

        + +
+

+ +
+

+ +
+

+ +
+

c
N N

f f
c

I I

f f
c

d d

f f
c

f f
1
2

2
1

1 2

1
2

2
1

1 2

1
2

2
1

1 2

1
2

2
1

1 2

ε ε
(2.16)

The first term represents the instantaneous range at the time t. The second term is

the instantaneous range correction. The third term is the range error due to the

oscillator noise. This term is approximated from the phase drift over the time-of-

flight τ in (2.13), and only the short period noise, whose period is less than the

time-of-flight, is contained. With 1ms time-of-flight τ, this term contains only the

high frequency noise, greater than 1kHz. The dual one-way ranging system can

remove long and medium wavelength oscillator noise effectively.

2.2.3 Dual Band Ionosphere Correction

To correct the ionosphere effect on the inter-satellite range measurement,

the GRACE satellites use dual-band signals, K (24GHz) and Ka (32GHz). For
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each band, the carrier frequency of one GRACE signal is offset from the other

signal and the two frequencies are defined as f1 and f2. This frequency difference

makes it necessary to define an effective frequency for the dual one-way phase

measurement.

The ionosphere phase shift Ii
j  can be approximated to be inversely

proportional to the carrier frequency f j  [42,71]:

I
C

fi
j I

j

= (2.17)

where CI  is a constant proportional to electron content along the signal path.

Based on the fifth term of (2.16), the dual one-way range error due to the

ionosphere becomes

δρ t c

C

f

C

f

f f
c

C

f f

I I

I( ) =
+

+
=1 2

1 2 1 2

(2.18)

This equation can be expressed with an effective frequency f [71]:

δρ t c
C

f
I( ) = 2 where f f f= 1 2 (2.19)

The effective frequency for the ionosphere range error is the geometric mean of

the two frequencies.
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Once the biased-ranges, RK  and RKa , have been obtained for K and Ka

bands, the standard dual-band combination algorithm is applied to obtain the

ionosphere-free corrected range:

R
f R f R

f f
K K Ka Ka

K Ka

= −
−

2 2

2 2

  
(2.20)

where fK  and fKa  are the effective frequencies for the K and Ka bands. Since

both K and Ka band signals derived from the same oscillator, the effect of the

oscillator noise on the biased range is equivalent for the both bands except the

scaling to the carrier frequencies. The oscillator noise passes through the dual-

band combination of (2.20), and its magnitude is not changed.

2.2.4 Satellite-to-Satellite Tracking Observables

The dual one-way phase measurement is converted to a biased range

between the two GRACE satellites as (2.16). This biased-range is the primary

observable of the GRACE mission, and range-rate and range-acceleration

measurements can be generated by numerical differentiation of the range

measurement. These three types of observation equations are derived in the

following discussion and implemented in the MSODP to generate simulated true

low-low measurements without noise. The partial derivatives of the same

equations are used to process the simulated measurements.
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As mentioned in Section 2.2.1, the actual phase-derived range, which

accounts for the two different signal transmission times, is converted into the

instantaneous range during the pre-processing. Then, this instantaneous range is

processed inside the MSODP to estimate the satellite states and gravity

coefficients. Since the instantaneous correction can be separated from the

MSODP estimation process, this section describes the instantaneous range and its

derivatives. The correction algorithm is discussed in Section 4.5.

The position vectors of satellite 1 and 2 at a nominal time t are defined as

r1  and r2, respectively, and then the inter-satellite range becomes

ρ = −( ) −( )r r r r1 2 1 2

T
 (2.21)

where r1  and r2 are expressed in the inertial coordinates. This range represents an

instantaneous range at the nominal time. The inter-satellite range vector r12 is

defined by

r r r12 1 2= − (2.22)

or

r e12 12= ρˆ (2.23)

ê12  is the line-of-sight(LOS) unit vector defined by

ê
r

12
12=
ρ

(2.24)
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The range-rate is simply obtained by differentiation of the range observable,

˙ ˙ ˆρ = ⋅r e12 12 , (2.25)

which represents a projection of the velocity difference vector along the line-of-

sight vector. It is noted that this quantity is not the magnitude of the velocity

difference vector.

The range-acceleration observable can be obtained by differentiation of

the range-rate observable to give

˙̇ ˙̇ ˆ ˙ ˆ̇ρ = ⋅ + ⋅r e r e12 12 12 12 (2.26)

The first term is the projection of the acceleration difference vector along the LOS

vector, and the second term is the scalar product of the velocity difference vector

and the rate of the LOS vector change. The rate of the LOS vector change can be

represented by

ˆ̇e
c

12
12=
ρ

(2.27)

where

c r e12 12 12= −˙ ˙ ˆρ (2.28)

denotes the relative velocity component that is perpendicular to the LOS vector.

The final form of the range-acceleration becomes
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˙̇ ˙̇ ˆ ˙ ˙ρ
ρ

ρ= ⋅ + −( )r e r12 12 12

2 21
(2.29)

2.2.5 SST Measurement Partials

Processing the SST measurements requires the partial derivatives of the

SST measurement with respect to the satellite state vectors. Three types of the

SST measurement, range, range-rate, and range-acceleration, will be available for

the GRACE mission and the partial derivatives of these measurements with

respect to the satellite position and velocity vectors are derived in this section

[80]. As mentioned in the previous section, the phase-derived range is converted

into the instantaneous range during the pre-processing. The estimation algorithm

utilizes the instantaneous range and its derivatives.

Since the range is a function of positions only, the partial derivatives of

the range have simple forms as

∂ρ
∂ ρr

r r

1

1 2= −





T
∂ρ
∂

∂ρ
∂r r2 1

= − (2.30)

∂ρ
∂v

0
1

= ∂ρ
∂v

0
2

= (2.31)

The partial with respect to the SST2’s position is the negative value of the partials

with respect to the SST1's. This kind of symmetry is common for other SST

measurement partial derivatives. It mainly results from the lack of geometry of

the inter-satellite observables, which can not be used to determine absolute
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satellite states. Only the relative position and velocity can be obtained by the

inter-satellite observables. That is the reason why GPS observables are needed to

augment SST observables. It should be noted that the following derivations have

no assumption on the location of two satellites. That is, two satellites do not have

to be in low-low mode. The formation may be either low-low or high-low.

The partial derivatives of the range-rate, which is the function of both

position and velocity, become

∂ρ
∂ ρ ρ

ρ
˙

˙ ˙
r

r
r

1
12

121= −






T
∂ρ
∂

∂ρ
∂

˙ ˙

r r2 1

= − (2.32)

∂ρ
∂ ρ

˙

v
r

1

12=






T
∂ρ
∂

∂ρ
∂

˙ ˙

v v2 1

= − (2.33)

The partial derivatives of the range-acceleration have more complicated

forms,

∂ρ
∂

∂
∂ ρ

ρ
ρ ρ

˙̇ ˙̇
ˆ

˙
ˆ

r
r
r

e h c c e
1

12

1
12 12 12

2

12

1 2 1=






+ − −






T T

∂ρ
∂

∂
∂ ρ

ρ
ρ ρ

˙̇ ˙̇
ˆ

˙
ˆ

r
r
r

e h c c e
2

12

2
12 12 12

2

12

1 2 1=






− − −






T T

(2.34)

∂ρ
∂

∂
∂ ρ

˙̇ ˙̇
ˆ

v
r
v

e c
1

12

1
12 12

2=






+
T

T

∂ρ
∂

∂
∂ ρ

˙̇ ˙̇
ˆ

v
r
v

e c
2

12

2
12 12

2=






−
T

T (2.35)
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where

c r e12 12 12= −˙ ˙ ˆρ (2.36)

h r r e e= − ⋅( )˙̇ ˙̇ ˆ ˆ
12 12 12 12 (2.37)

The first term in (2.34) needs information other than the satellite states since it

contains the acceleration term that consists of the gravity acceleration and other

accelerations that are functions of either satellite position or velocity. This makes

the partial derivatives very complicated, especially when higher degree and order

gravity terms are used.

2.3 GPS MEASUREMENT PROCESSING

2.3.1 GPS Measurement Model

The precision orbit determination program MSODP, which has been

developed and used at the University of Texas Center for Space Research

(UTCSR), is based on double differenced phase measurements as the primary

observations of GPS data processing [57]. The basic equations for the phase

measurements and the double differenced GPS phase measurements are described

in several references [27,42,57].
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GPS-p GPS-q

SAT-k

STA-l

ϕk
q

ϕk
p

ϕ l
p ϕ l

q

Figure 2.5 GPS carrier phase observables for the double

 differenced measurement

Figure 2.5 represents four carrier phase measurements, which form one

double differenced measurement. The derivation of the double differenced

measurement equation begins with one phase measurement. A single frequency

GPS phase measurement, L1 or L2, is described.

The carrier phase measurement between a GPS satellite and a receiver that

may be a low satellite or a ground station can be represented by the following

equation [42,57]:

ϕ ϕ ϕ εk
p

k k k
p

k k
p

k
p

k
pt t t t t t N d+( ) = +( ) − +( ) + + +∆ ∆ ∆ (2.38)

where
ϕk

p
kt t+( )∆ = phase difference between the oscillator

     of the  receiver k and the GPS satellite p
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ϕk kt t+( )∆ = reference phase, generated by the receiver k

ϕ p
kt t+( )∆ = received phase, transmitted by the GPS satellite p

t = nominal reception time

∆tk = time tag error of the receiver k

Nk
p = integer ambiguity

dk
p = cycle delay or advance due to ionosphere, troposphere,

    hardware delay, multipath, and so on

εk
p = random measurement noise

The nominal time t is a specified time for forming a double-differenced

measurement and orbit integration. The time tag error ∆tk  represents the time

difference between the nominal time t and the actual measurement time t tk+ ∆ .

The difference ϕ ϕk k
p

kt t t t+( ) − +( )∆ ∆  is developed for a vacuum, and the

corrections for the propagation media, instrument biases, and delays must be

added separately. Neglecting the effect of the ionosphere and atmosphere, the

received carrier phase ϕ p t( )  is equivalent to the emitted phase at the GPS

satellite, exactly τ k
p  earlier:

ϕ ϕ τp
k p k k

pt t t t+( ) = + −( )∆ ∆ (2.39)

τ k
p  is the time-of-flight from the GPS satellite p to the receiver k. ϕ p  represents

the phase emitted by the GPS satellite p. The phases at the measurement time can

be related to the phase at the nominal time by the following linearization:
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ϕ ϕ ϕk k k k kt t t t t+( ) = ( ) + ( )∆ ∆˙ (2.40)

ϕ τ ϕ ϕ τp k k
p

p p k k
pt t t t t+ −( ) = ( ) + ( ) −( )∆ ∆˙ (2.41)

The rate of phase changes can be approximated as

ϕ̇ δk kt f f( ) = +0 (2.42)

ϕ̇ δp pt f f( ) = +0 (2.43)

where f0 is the nominal frequency of the GPS phase signal and the δfk  and δfp

represent the frequency errors from f0 due to oscillator instability. Using these

approximations, the equations (2.40) and (2.41) become

ϕ ϕ δk k k k kt t t f f t+( ) = ( ) + +( )∆ ∆0 (2.44)

ϕ τ ϕ δ τp k k
p

p p k k
pt t t f f t+ −( ) = ( ) + +( ) −( )∆ ∆0 (2.45)

The time-of-flight τ k
p  is consistent with the geometric range from the GPS

satellite p to the receiver k.  However, it is not the range at the nominal time t but

the range at the measurement time t tk+ ∆ , and may be approximated using the

range ρk
p t( )  and range-rate ρ̇k

p t( )  at time t as follows

τ ρ ρk
p

k
p

k
p

kc
t t t= ( ) + ( ) ⋅[ ]1 ˙ ∆ (2.46)

Substitution of (2.45) and (2.46) into (2.39) yields the received phase

ϕ ϕ δ ρ ρp
k p p k k

p
k
p

kt t t f f t
c

t
c

t t+( ) = ( ) + +( ) − ( ) − ( ) ⋅





∆ ∆ ∆0

1 1 ˙ (2.47)
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Substitution of (2.44) and (2.47) into (2.38) separates the phase measurement at

t tk+ ∆  into the phases at the nominal time t and other terms:

ϕ ϕ ϕk
p

k k pt t t t+( ) = ( ) − ( )∆

      + −( ) + +( ) ( ) + ( ) ⋅[ ]δ δ δ ρ ρf f t
c

f f t t tk p k p k
p

k
p

k∆ ∆1
0

˙

      + + +N dk
p

k
p

k
pε (2.48)

This is the carrier phase measurement equation between the receiver k and the

GPS satellite p. It contains a time tag error ∆tk  and two frequency errors δfk  and

δfp .

If two receivers k and l, one is a ground receiver and the other one is a low

satellite, observe the same GPS satellite p at the same nominal time t, then one

can write two equations of the form of (2.48). The single difference phase

observable may be defined by the difference of the two received phase

measurements transmitted from the same GPS satellite:

ϕ ϕ ϕk l
p

k
p

k l
p

pt t t t t ( ) ≡ +( ) − +( )∆ ∆

= ( ) − ( )ϕ ϕk lt t

+ −( ) − −( )δ δ δ δf f t f f tk p k l p l∆ ∆

+ +( ) ( ) + ( ) ⋅ − ( ) − ( ) ⋅[ ]1
0c

f f t t t t t tp k
p

k
p

k l
p

l
p

lδ ρ ρ ρ ρ˙ ˙∆ ∆

+ + +N dkl
p

kl
p

kl
pε (2.49)
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Nk l
p
 , dk l

p
 , and εk l

p
  denotes combined ambiguity, cycle delay, and random noise,

respectively. Ideally, two phases should be measured at the same nominal time t,

but there exist time tag errors ∆tk  and ∆tl .

If two receivers k and l observe two GPS satellite p and q at the same

nominal time, the double difference phase observable is defined by

ϕ ϕ ϕk l
p q

k l
p

k l
qt t t 

 
  ( ) ≡ ( ) − ( )

= ( ) − ( ) − ( ) + ( )[ ]f

c
t t t tk

p
l
p

k
q

l
q0 ρ ρ ρ ρ

+ ( ) − ( )( ) − ( ) − ( )( )[ ]f

c
t t t t t tk

p
k
q

k l
p

l
q

l
0 ˙ ˙ ˙ ˙ρ ρ ρ ρ∆ ∆
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This phase measurement can be scaled to a biased-range by multiplying the

wavelength λ = c f/ 0, where is f0 is the reference frequency of the GPS signal,

either 1.57542 GHz (L1) or 1.2276 GHz (L2):
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where

C N N N Nk l
p q
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p

l
p

k
q

l
q

 
 = − − +[ ]λ (2.52)

δ λk l
p q

k
p

l
p

k
q

l
qd d d d 

 = − − +[ ] (2.53)

ξ λ ε ε ε εk l
p q

k
p

l
p

k
q

l
q

 
 = − − +[ ] (2.54)

The first line represents the double differenced geometric range and the second

line represents the effect of timing error due to receiver clock errors, ∆tk  and ∆tl .

The third line represents the coupling between the GPS frequency errors and the

range differences. The GPS satellites have very accurate onboard clocks and the

frequency instability  δf f/ 0  is 10-12  [27,42]. With a range difference of 1000 km,

this magnitude becomes an order of 10-6 m level, and this term can be neglected.

The fourth line represents the coupling between the frequency errors and the

range changes and its magnitude is even much smaller than that of the third line.

The fifth line is the coupling the frequency error difference and the time tag error

difference and can be maintained less than an order of sub-mm level even with
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one second time tag difference. The last line represents the ambiguity, time delay,

and measurement random noise. The MSODP uses this equation for processing

GPS double difference observations, which are formed by the data pre-processor.

The receiver clock error may be modeled as a linear function as follows

∆t a b t tk k k k= + −( )0 (2.55)

∆t a b t tl l l l= + −( )0 (2.56)

where ai  and bi  are the clock bias and drift, respectively. These time tag errors

may be supplied from other sources and used during pre-processing. In that case,

the single phases ϕ i
j

it t+( )∆  are interpolated to ϕ i
j t( )  and the second term of

(2.51) can be ignored.

2.3.2 GPS Measurement Partials

For mapping the GPS observations into the satellite state and other

parameters, the partial derivatives of the GPS double difference measurement

with respect to the satellite state and the measurement parameters need to be

computed. The partial derivatives are formed with respect to low satellite

positions, ground receiver positions, GPS satellite positions, combined ambiguity,

clock parameters, zenith path delay, and so on.

The partial derivatives of (2.51) with respect to the ground station position

becomes
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
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(2.57)

where

rk = position of ground station k, x y zk k k

T
, ,( )

r p , r q = position of GPS satellites p and q

ρk
p = r r r rk

p T

k
p−( ) −( )

= geometric range between ground station k and GPS

   satellite p

ρk
q = r r r rk

q T

k
q−( ) −( )

= geometric range between ground station k and GPS

   satellite q

The first and second terms represent the line-of-sight unit vectors to GPS satellites

p and q respectively. The partial derivative with respect to the receiver position

implies the difference between two line-of-sight unit vectors.

The partial derivatives with respect to the low satellite position are

represented in a similar way:

∂
∂ ρ ρ
Φk l

p q

l

T

l
p

l
p

l
q

l
q

 
 

r
r r r r
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




 = − − + −

(2.58)
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The partial derivatives with respect to GPS satellite position vectors, r p

and r q , are represented by

∂
∂ ρ ρ
Φk l

p q
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T
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p
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p

l
p

l
p

 
 

r
r r r r
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= − − + −
(2.59)
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(2.60)

The kinematic parameters in the GPS measurement include the receiver

clock parameters and the combined ambiguity. The partial derivatives with

respect to the receiver clock parameters a bk k,( ) or a bl l,( ) are represented by

∂
∂

ρ ρΦk l
p q

k
k
p

k
q

a
 
 

= −( )˙ ˙ (2.61)
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∂
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k
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q
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t t 

 

= −( ) −( )˙ ˙
0 (2.62)

or

∂
∂

ρ ρΦk l
p q

l
l
p

l
q
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 -= −( )˙ ˙ (2.63)

∂
∂

ρ ρΦk l
p q

l
l
p

l
q

lb
t t 

 

 -= −( ) −( )˙ ˙
0 (2.64)

The partial derivative with respect to the combined ambiguity Ck l
p q
 
 

becomes a constant unit number, which is usual for the measurement parameters.

The equation is given by
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∂
∂
Φk l

p q

k l
p qC
 
 

 
  = 1 (2.65)

There are two types of orbit determination method using GPS

observations. One is the kinematic method, which estimates the receiver satellite

states only by the GPS measurements without equations of motion or description

of the dynamic force models. The other one is the dynamical method, which is

based on the dynamic models in the equations of motion. While the kinematic

method is limited by measurement noise level, the dynamic method is mainly

limited by the accuracy of the reference dynamic modeling. This dependency on

the dynamic models makes it possible for the dynamic method to improve the

dynamic model. MSODP uses the dynamic orbit determination so that better

dynamic model, especially gravity model, gives more accurate orbit estimates.

2.4 ESTIMATION THEORY

2.4.1 Linear Estimation Theory

This section describes a conventional estimation method, least squares

estimate. This method was used for the estimation of orbit and gravity solution

using the simulated GRACE measurements.

The state vector is composed of all dependent variables or constant

parameters, which are required to define the time rate of change of the state of the
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dynamical system [67]. With this definition, the n-dimensional state vector, X ,

can be represented as

X r v= [ ]         αα T (2.66)

where r  and v  represent the position and velocity vectors, respectively, and αα

represents the constant model parameters. The state equations, which are derived

from an application of Newton’s second law for each satellite, can be expressed as

first-order ordinary differential equations as

˙ ,X F X= ( )t X Xt0 0( ) = (2.67)

The observation-state vector relationship can be expressed as

Y G Xi i i it= ( ) +, εε (2.68)

Yi represents an observation at time ti  and it is assumed to be a nonlinear function

of the true observation G Xi it,( )  and the random measurement noise εεi . These

nonlinear state and observation equations can be linearized in the following way.

Define the difference between true and reference values as

x X Xt t t( ) = ( ) − ( )* y Y Yt t t( ) = ( ) − ( )* (2.69)

X* t( ) and Y* t( )  represent a reference state vector and an associated reference

observation vector, respectively. When the reference values are within the linear

region of the true value, a first-order Taylor series approximation yields the

following linearized equations:
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ẋ xt A t t( ) = ( ) ( ) (2.70)

y xi i i iH= +˜ εε (2.71)

where

A t t( ) = ( )∂
∂

F
X

X*, ˜ ,*H ti i= ( )∂
∂
G
X

X (2.72)

The linearized state equations of (2.70) have the general solution as

x xt t t( ) = ( )Φ , 0 0 (2.73)

The matrix Φ t t, 0( )  is called the state transition matrix and x0  is the state at a

general epoch t0 . The state transition matrix can be shown to satisfy the following

differential equation:

˙ , ,Φ Φt t A t t t0 0( ) = ( ) ( ) Φ t t I0 0,( ) = (2.74)

where numerical integration yields the state transition matrix at any time t. Using

(2.73), xi  in (2.71) can be replaced with x0  as follows:

y x= +H εε (2.75)

where
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The subscript of x0  is dropped for convenience. When each measurement has

different weightings, the weighted least square solution of the equation (2.75)

becomes [67]

x̂ y= ( )−
H WH H WT T1

(2.77)

If the estimate is unbiased and a linear combination of the observations, the

minimum variance solution can be obtained in the similar form as

x y= ( )− − −H R H H RT T1 1 1 (2.78)

R  is the covariance of the observation error εε, which is assumed to have a zero

mean. This minimum variance estimate requires only the first and second

moments of the probability density function of the observation errors instead of

complete statistical description. The matrix H R HT − −( )1 1
 is called the covariance

matrix and its inverse H R HT −1  is called the information matrix. This solution will

agree with the weighted least square solution of (2.77) when the weighting matrix

W is equal to the noise covariance matrix inverse R−1. In addition, if the

observation errors have a normal distribution, the minimum variance estimate will

agree with the maximum likelihood estimate.



46

2.4.2 Definition of the Estimation Parameters

The constant parameter vector αααα in (2.66) can be classified into dynamic

and kinematic parameters [57]. The dynamic parameters are the set of parameters,

which appear explicitly in the differential equations describing the dynamic

model. These include the gravity coefficients, drag coefficient, radiation

coefficient, empirical force parameters, and so on. Since not all the dynamic

parameters are present in the measurement equation explicitly, they need to be

mapped to the epoch state by using the state transition matrix that is usually

computed by numerical integration. In this study, the accelerometer scale factors

and biases are treated as dynamic parameters. The kinematic parameters generally

appear in the measurement model only. They include measurement biases, ground

station coordinates, the Earth rotation parameters, and so on.

The estimation vector in (2.66) can be rewritten with the dynamic

parameter vector d and the kinematic parameter vector k in place of the constant

parameter vector αααα:

  X r v d k= [ ]             M
T

(2.79)

Then the matrix A t( )  in (2.72) becomes

A t

I

( ) = =



















∂
∂

∂ ∂ ∂ ∂ ∂ ∂F
X

f r f v f d

0 0 0

0

0 0 0 0

0 0 0 0

(2.80)
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The dynamic parameters are mapped to other time epochs by the state-transition

matrix in (2.73). Their corresponding elements in H̃  have zero values, but those

ones in H have non-zero values. On the other hand, the partials with respect to the

kinematic parameters have zero values in A t( ) , then the corresponding elements

of the state-transition matrix have zero values.
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3 SIMULATION MODELS AND PROCEDURE

3.1 INTRODUCTION

This chapter describes the models and procedures used for the numerical

simulations of gravity recovery using the SST and GPS data. The simulation

procedure consists of two major parts, generating simulated measurements and

processing them to estimate the gravity field. These two procedures use different

models, one is the truth model for generating measurements, and the other one is

the nominal model for processing measurements. The difference between the two

models represents the current uncertainty level on the models. It also enables

determination of sensitivity of results to model errors.

The simulation models consist of the force models and the measurement

models. The force models include gravity field, atmospheric drag, radiation

pressure, and accelerometer noise models. The measurement models include the

SST and GPS noise models. The SST and accelerometer models are described in

the following chapters. The method of computing the optimal weighting of two

information equations, one from SST measurements and the other from GPS

measurements, are described.

To treat residual or unmodeled measurement error, a set of empirical

parameters is used. These include 1 cycle-per-revolution (cpr) and tangential

acceleration parameters to adjust the orbit trajectories. Low-low empirical

parameters were also used to adjust the low-low SST measurements. Another set
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of empirical parameters, accelerometer scale factor and bias, are described in

Chapter 5.

Due to available computer limitations, this study limits the size of the

gravity field estimation to degree 70 to 120 with the conventional least squares

estimation method. This gravity size is not enough for some sensitivity studies

where the accuracy of higher degree gravity field is important. To overcome this

limit, a semi-analytic method, which is based on an analytic method approach,

was used for predicting the geoid error spectrum for higher degree fields. These

analytic results were verified to the numerical results in the low degrees. The

mathematical formulations are described along with the procedure.

3.2 FORCE MODELS

The differential equations describing the motion of an Earth orbiting

satellite may be expressed by

˙̇r r a a a= − + + +µ
ε

 

r c nc3 (3.1)

where µ  is the Earth gravitational parameter and r  is the geocentric position

vector of the satellite[67].

In Equation (3.1) ac  represents the force per unit mass produced by

gravity, also called the conservative force, which depends on the satellite position

only. Such a force can be expressed as the gradient of a potential function U that
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consists of the contribution due to the gravitational geopotential, the solid Earth

tides, ocean tides, N-body potential, atmospheric tides, rotational deformation,

general relativity, and so on.

The term anc  represents the force per unit mass due to the non-

gravitational or non-conservative forces and it may consist of the following

components

a a a a a anc a sr er thrust other= + + + + (3.2)

It includes atmospheric drag aa , solar radiation pressure asr , Earth radiation

pressure aer , thrust athrust , and others aother . The accelerometer on the center of

mass of each GRACE satellite detects only the total non-gravitational force. This

accelerometer measurement can be used to identify the non-gravitational force

acting on the satellite trajectory and to remove its effect on the satellite trajectory

estimation. The term aε  represents any unmodeled errors.

3.2.1 Gravity Field Models

The primary gravitational force used in this study was the non-spherical

geopotential, which is expressed in terms of a spherical harmonic expansion in the

Earth fixed reference frame as [33]

U r t
r

R

r
P C t m S t mns

e

m

n

n

n

nm nm nm, , , sin cos sinφ λ µ φ λ λ( ) = 



 ( ) ( ) + ( )( )

==

∞

∑∑
02

(3.3)
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where Re  is the mean equatorial radius of the Earth, and Pnm  is the normalized

associated Legendre function of degree n and order m. r, ,φ λ( ) are radial distance,

latitude and longitude of the satellite in the geocentric body-fixed coordinate

system. The center of mass of the Earth is assumed to be coincident to the

coordinate origin so that the degree n = 1 terms may be neglected. The

coefficients C tnm( )  and S tnm( ) are the normalized spherical harmonic coefficients,

which consist of the mean and time-variable parts:

C t C C tnm nm nm( ) = + ( )0 ∆

S t S S tnm nm nm( ) = + ( )0 ∆ (3.4)

In this study, only the mean parts were considered. By the degree and order

relationship, the gravity coefficients are classified into three sets, zonal (m = 0),

sectorial (n = m), and tesseral (n ≠ m ≠ 0) terms.

For most numerical simulations in this study, EGM96 reference was used

as the truth gravity field for the mean gravity to generate simulated

measurements. EGM96 is a model complete to degree and order 360 and the

result of collaboration between NASA Goddard Space Flight Center (GSFC) and

the Defense Mapping Agency (DMA)[43]. EGM96 is a blended solution, which

consists of a (70x70) combination solution based on direct satellite altimetry,

surface gravity, and satellite tracking data. The portion of the field from degree 71

to 359 is derived from a block diagonal solution, and the solution at degree 360

comes from the corresponding quadrature solution. Because of the block diagonal

solution over degree 70, it has only a (70x70) solution covariance matrix.
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A clone of EGM96 was used as the nominal gravity field. The difference

between the clone and truth gravity coefficients represent the uncertainty level (1

σ) of the truth model. The clone gravity coefficients up to degree 70 were made

from the EGM96 covariance and the higher terms were from the uncertainty of

the gravity coefficients [8,10].

The time series and amplitude spectrum of the gravity accelerations ac  on

the satellite at 450km altitude are shown in Figure 3.1. The inclination is 87° and

the eccentricity is 0.001. The orbit of one satellite was numerically integrated with

the gravity force and the acceleration was stored for each time step. The radial

component has the largest magnitude of 8.5 m/s2 and the transverse component

has a magnitude of 0.01 m/s2. The transverse component has a strong 2-cpr

(Cycle-Per-Revolution) signal, which is mainly due to the earth oblateness (J2)

but the normal component has a strong 1-cpr signal. On the other hand, the radial

component has both 1 and 2-cpr signals and the former is mainly due to the orbit

eccentricity.
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Figure 3.1 Time series and amplitude of the gravity accelerations at

450km altitude (i = 87°°°°, e = 0.001)
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3.2.2 Atmospheric Drag

A simple atmospheric model, which assumes a constant area in the

direction of the relative wind, was used in this study. The force per unit mass

acting on the satellite may be given by

a v va
d

r r

C A

m
= − 1

2
ρ (3.5)

where

ρ = atmospheric density

vr = satellite velocity vector relative to the atmosphere

Cd = drag coefficient

A = cross sectional area of the satellite perpendicular to  vr

m = satellite mass

The relative velocity vr  may be related to the rotation of the atmosphere over the

Earth and the horizontal winds as follows

v v r ver w= − × −ωω (3.6)

where

v = inertial velocity vector of the satellite

r = position vector of the satellite from the Earth center

ωωe = rotation rate of the Earth
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vw = velocity vector of the horizontal winds in the Earth

   fixed coordinates

Among several density models implemented in MSODP, the DTM

(Density Temperature Model) [2,47] was used for simulating the truth

atmospheric drag. A cannon-ball model was used and the ballistic coefficient

C A md /  was taken as 1/240 [24]. The solar activity is predicted to reach near

maximum in 2001, which is the planned launch year of the GRACE satellites, and

to decrease during the mission lifetime. To represent this relatively high solar

activity, most of the simulation epochs were set to January 1989 due to its

relatively high solar activity. Usual value of the solar flux F 10.7 and the

geomagnetic index Kp were 150 and 2.0, respectively.

Previous orbit determination simulations [10,57,65] used two atmospheric

density models for truth and nominal drag accelerations. However, this study does

not require a nominal density model since the simulated accelerometer

measurements replace the nominal non-gravitational accelerations including the

atmospheric drag.

3.2.3 Solar Radiation Pressure

Since the atmospheric drag is dominant in the GRACE satellite altitude

(<500 km), the solar radiation pressure will have less effect on the satellite

trajectory than the atmospheric drag. While the force direction of the atmospheric
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drag is always the transverse direction, the direction of the solar radiation pressure

is changing according to the relative position of the Sun and the satellite.

The induced acceleration from the direct solar radiation pressure asr from

the Sun on a satellite can be modeled as [68]

a usr p
A

m
= − +( )ν η 

1 ˆ (3.7)

where

p = momentum flux due to the Sun

ν = eclipse factor

m = mass of the satellite

A = cross-sectional area of the satellite perpendicular

   to the satellite-Sun vector

η = reflectivity coefficient

û = unit vector from the satellite to the Sun

The mass m was 420kg and the same value was applied for the Earth radiation

pressure models. The reflectivity η  of 0.5 was used but its time variability was

not considered. For the variable area model, the following values were used for

different sections:

Aroll   = 1.07 m2 Apitch   = 1.90 m2 Ayaw   = 4.40 m2
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3.2.4 Earth Radiation Pressure

The energy flux of the Earth causes the Earth radiation pressure, which is

similar to the solar radiation pressure. This study used the following Earth

radiation model, which gives the force per unit mass as [38]

a rer
c

j j s s j B j
j

N

A
A

m c
a E e M= +( ) +( )[ ]

=
∑1

1

η τ θ' cos ˆ
 

 (3.8)

where

η = satellite surface reflectivity

A' = projected, attenuated area of a surface element of

      the Earth

Ac = nadir projected cross-sectional area of the satellite

m = mass of the satellite

c = speed of light

τ j = 1   if the center of the j-th element is in day-light

   0   if the center of the j-th element is in darkness

aj , ej = albedo and emissivity of the j-th element

Es = solar momentum flux density at 1 AU

θs = solar zenith angle

MB = exitance of the Earth (= Es / 4 for an ideal black body)

r̂j = unit vector from the center of the j-th element
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    to the satellite

N = number of earth elements

The albedo and emmisivity may be expressed in second degree harmonics to

account for latitudinal variation in Earth radiation and for seasonally dependent

latitudinal asymmetry:

a a a P a P= + ( ) + ( )0 1 10 2 20sin sinφ φ

e e e P e P= + ( ) + ( )0 1 10 2 20sin sinφ φ (3.9)

where Pi0  is the i-th degree Legendre polynomials and φ  is the latitude of the

center of the element on the Earth. The degree one terms may have be periodic as

a a a t t a t tc E s E1 1 1 0 1 0= + −( ) + −( )cos sinω ω

e e e t t e t tc E s E1 1 1 0 1 0= + −( ) + −( )cos sinω ω (3.10)

where ωE  is the frequency of 1/365.25 days. In this study, the following

parameters were used [57]:

a0 0 34= .

a1 0 0= . a c1 0 10= . a s1 0 0= .

a2 0 29= .

e1 0 68= .

e1 0 0= . e c1 0 07= − . e s1 0 0= .

e2 0 18= − .
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The period of degree one terms was one year. The same reflectivity coefficient as

the radiation pressure η = 0.5 was used and the cross-sectional area was 4.4 m2.

3.2.5 Comparison of Non-Gravitational Forces

The time series of the atmospheric drag, solar radiation pressure, and

Earth radiation pressure accelerations are shown in Figure 3.2. The orbit altitude

was 450 km with the inclination of 87°. The same simulation parameters

described in Sections 3.2.2, 3.2.3, and 3.2.4 were used for generating the non-

gravitational accelerations. The trajectory of one satellite was numerically

integrated with the gravity and the individual non-gravity forces. The non-

gravitational acceleration was stored for each time step along the trajectory. The

β′ angle, which is the angle between the orbit plane and the geocentric direction to

the Sun [15], was set to 0° to maximize the radial solar radiation pressure. Since

the normal component is not coupled with the in-plane motion in the linear

region, the low-low SST observation hardly depends on the normal component if

the two satellites are in the same orbit plane. For this reason, only the radial and

transverse components are presented. The transverse component of the

atmospheric drag has the strongest signal with the mean value of 300 nm/s2. The

transverse components of the other accelerations are at least an order of

magnitude smaller. On the other hand, the radial component of the atmospheric

drag is much smaller than that of the radiation pressure. The discontinuity of the

solar radiation pressure is due to the satellite entrance into shadow region.
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The amplitude spectrums of the non-gravitational accelerations are shown

in Figure 3.3. All of these non-gravitational accelerations have strong tone

signals, e.g. 1-cpr, 2-cpr, etc. Since this characteristic is similar to the acceleration

caused by the resonant gravity coefficients, some of the accelerometer errors,

which are proportional to the non-gravitational accelerations, mainly degrade

those resonant coefficients. Details are described in Chapter 5. Also, the thermal

variations of instruments have this tone signal and may degrade the accuracy of

the resonant coefficients.
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Figure 3.2 Time series of the non-gravitational accelerations

(h = 450km)
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Figure 3.3 Amplitude spectrum of the non-gravitational accelerations

(h = 450km)
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3.3 EMPIRICAL PARAMETERS

One of the ways for treating mismodeled or unmodeled forces acting on a

satellite is to estimate empirical force parameters. Two types of empirical

parameters, dynamic and kinematic empiricals were used in this study. The

dynamic parameters were used for adjusting the satellite orbits, and the kinematic

parameters were for adjusting the low-low SST measurements. Strictly speaking,

the dynamic empirical parameters are classified into the force models in the

previous section.

3.3.1 Dynamic Empirical Parameters

One-cpr (cycle-per-revolution or once-per-rev) and constant tangential

parameters were used as the dynamic parameters. The 1-cpr empirical parameters

are given by [10,57]

F C u S uR R R= +cos sin (3.11)

F C u S uT T T= +cos sin (3.12)

F C u S uN N N= +cos sin (3.13)

where

FR = 1-cpr radial empirical perturbation

FT = 1-cpr transverse empirical perturbation

FN = 1-cpr normal empirical perturbation
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u = argument of latitude of satellite (u = nt)

C SR R, = 1-cpr radial empirical parameter

C ST T, = 1-cpr transverse empirical parameter

C SN N, = 1-cpr normal empirical parameter

The constant tangential empirical parameter is defined as

F ut t tC= )
(3.14)

where

Ct = tangential empirical parameter

)
ut = unit velocity vector

They remove the long period effect of mismodeled forces and improve orbit

determination accuracy. They have piecewise constant values over 3 ~ 24 hours.

Since these are not explicitly present in the measurement equation, they are

implemented into the estimation process via propagation of the state transition

matrix as explained in Chapter 2. When pre-calibrated scale factors and biases are

applied to the accelerometer measurements, the scale factors and biases should be

estimated. These parameters are also classified into the dynamic parameters but

will be described in Chapter 5.
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3.3.2 Kinematic Empirical Parameters

The kinematic empirical parameters used in this study include low-low

satellite-to-satellite tracking bias parameters. They are used to remove the error in

the inter-satellite ranging measurements and explicitly shown in the low-low

measurement equation. For better understanding of the use of these parameters,

the power spectral density of a typical range-rate measurement residual is

presented in Figure 3.4.
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Figure 3.4 Power spectral density of simulated inter-satellite

range-rate noise

Applied measurement error sources were the SST oscillator, system, and

multipath noise described in Chapter 4. The accelerometer errors described in

Chapter 5, random, misalignment, and attitude errors, were included as the force

model errors. It is the range-rate signal difference between the simulated signal by

the truth model and the signal by the nominal model. However, the gravity error is

not included, so that both the truth and nominal models contain the same gravity
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model. This figure reflects the measurement and force model errors due to the

SST accelerometer measurement noise except the gravity field error. It shows

strong low frequency power especially below 1 cpr that is equivalent to 0.00018

Hz.

Those strong constant and 1-cpr residuals can be explained by the analytic

expressions of (A.20) in Appendix A, which are derived from Hill's equations.

They provide expressions for the resulting SST perturbation due to a disturbing

acceleration with an arbitrary frequency ω. The disturbing acceleration produces a

SST perturbation at three frequencies, zero (constant), 1 cpr, and ω itself. In other

words, perturbation of any frequency results in the SST perturbations of constant

and 1 cpr. The disturbing acceleration may be either gravity acceleration or

unmodeled acceleration. The perturbation due to the unmodeled acceleration

should be removed from the observations by applying empirical parameters but

the perturbation due to the gravity should be retained. The best way is to adjust

the empirical parameters in all frequency ranges but it is not practical to estimate

all those parameters. In most cases, the 1-cpr and constant empiricals are

estimated since they are common for all acceleration-derived perturbations and

have a relatively large magnitude.

By differentiation of the range perturbation equations of (A.20), range-rate

partial equations can be obtained as follows:

˙ cos sinρerr A Bt E Ft nt G Ht nt= + + +( ) + +( )

       + +( ) + +( )[ ]
=
∑ E Ft t G H t ti i i i i i
i

N

cos sinω ω
1

(3.15)
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where n is the mean motion of the orbit and N  is the number of distinctive

frequencies of the forces. Any force components at a certain frequency ω i  are

grouped into one i-th force. This equation implies that the range-rate error is the

sum of linear and harmonic terms. The purpose of the low-low empirical

parameters is to remove the error contribution from the observation. This is done

by estimating the linear and 1-cpr terms, A, B, E, F, G, and H. Due to the huge

number of N, it is not realistic to estimate all the ω i  frequency terms, Ei, Fi , Gi ,

and Hi  for i = 1 , 2,…, N . From this analytic basis, the following low-low

empirical formulations are used for processing the range-rate measurements:

˙ ˙ cos sinρ ρobs nom A Bt E Ft u G Ht u− = + + +( ) + +( ) (3.16)

where

ρ̇obs = observed low-low range-rate

ρ̇nom = nominal low-low range-rate

A = low-low bias

B = low-low bias-rate

E, F = low-low periodic bias

G, H = low-low periodic bias-rate

u = argument of latitude of the midpoint of two satellites

  (u = nt)

Another concern is the determination of arc lengths for each empirical parameter.

The low-low bias and bias-rate were estimated every 45 minutes, equivalent to
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half of the orbit period. Shorter arc length may harm the gravity signals since the

empirical force resembles the gravity force, especially 2-cpr signal by J2 term.

Low-low 1-cpr parameters are for removing time varying 1-cpr measurement

errors and are estimated every 90 minutes or one orbit revolution. With this bias

adjustment process, the total RMS reduced to less than 0.1 µm/s from the pre-fit

value of 0.35 µm/s as shown in Figure 3.5.
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Figure 3.5 Power spectral density of simulated inter-satellite

range-rate noise after adjusting empirical parameters

These empiricals are the kinematic parameters and the partial derivative of

the range-rate measurement with respect to these parameters are given by
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∂ρ
∂

˙

A
= 1

∂ρ
∂

˙

B
t=

∂ρ
∂

˙
cos

E
u= ∂ρ

∂
˙

cos
F

t u=

∂ρ
∂

˙
sin

G
u= ∂ρ

∂
˙

sin
H

t u= (3.17)

3.4 GPS MEASUREMENT MODEL

The GPS tracking of each GRACE satellite provides the information on

the GRACE satellite orbit and measurement time-tags. The real-time GPS

solutions are used for the onboard controller for the orbit control and

measurement time-tags. More refined measurements are obtained through ground

processing, e.g. time-tag and ionosphere corrections, for the science purpose

(gravity estimation). In this simulation study, only the ground-processed

measurements were considered for the orbit information. The double difference

observations formed by two GPS satellites, one GRACE satellite, and one ground

receiver were used.
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Figure 3.6 Simulation GPS tracking network

The GPS tracking scenario assumed a constellation of 24 GPS satellites

and 6 GPS ground stations, as well as the GPS receivers onboard the two GRACE

satellites. The GPS satellite initial conditions and ground station coordinates

described in Sharma's study [65] were applied. Figure 3.6 shows the location of

the ground stations, which are globally distributed for minimizing geographically

correlated errors. In order to analyze the effect of the number of stations, some

experiments were performed by changing the number of stations, from 6 to 24.

The number of the double differenced observations is proportional to the number

of ground stations. Therefore, the computational processing time is proportional

to the number of stations. In spite of the computational time increase, the gravity

solution improvement was not significant. For this reason, the number of ground

stations was limited to six.
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    (Single phase and double differenced phase observations)

The GPS receivers were assumed to track all the visible satellites. The

elevation cut-off angles for the ground and flight receivers were 15° and 0°,

respectively. Figure 3.7 shows the number of the GPS observations for one

GRACE satellite. The observation time interval is 10 seconds. The average

numbers of observations are 9 for the single phase observations and 5.5 for the

double differenced phase observations (with six ground stations).

Gaussian random (white) noise with 5mm standard deviation was applied

for the single phase-derived range measurements. One double differenced

measurement consists of four phase measurements, and its corresponding noise

level becomes 1cm (= 4 5× mm ). The measurements were assumed as

ionosphere corrected values. The dynamic error model error for the GPS satellites

was limited to the gravity model error, i.e. truth and nominal gravity model

difference. The GPS orbit is less sensitive to the higher degree and order gravity
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field due to its high altitude, so that a smaller size of gravity field (8×8) was

applied for the GPS orbit integration.

3.5 SIMULATION PROCEDURE

3.5.1 Simulation Procedure

The primary purpose of the numerical simulations of this study was to

analyze how the error sources affect the performance of the GRACE mission,

which is the accuracy of the estimated gravity field. The error models were

obtained through differences in two models. One was used for generating the

measurements and the other one was used for processing the measurements. The

former model is called the truth model and the later one is called the nominal

model. The error models include gravity field, other dynamic forces, and

measurement noises. Figure 3.8 shows a simplified flow chart of the simulation

procedure and each step is described as follows.

(A) The simulation procedure started with generating simulated

observations using the truth dynamic models. Both SST and GPS double

difference measurements were computed and then noise was added.

Accelerometer and attitude measurements were also generated with noise.

(B) Next step was to adjust the orbit trajectory. Due to different dynamic

models and noises, the nominal orbit generated by the nominal models, was too

different from the truth orbit. It is difficult to apply the linear estimation method,
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which assumes that the true and nominal values are in the linear region. The

nominal orbits were adjusted by using the simulated GPS measurements with the

nominal gravity field. The gravity field was not estimated in this process.

(C) The SST measurement is a biased measurement of the relative

distance between the two satellites and it does not provide enough information to

estimate the absolute position of each satellite. Due to the singularity of the SST

information, the high-low GPS information was also needed to estimate the

satellite trajectories and the long wavelength component of the gravity. The

partial derivatives of the SST and GPS measurements with respect to the gravity

field coefficients, the initial conditions, and other parameters, were computed

along the nominal trajectory computed in the previous process.

(D) The last step was to combine the SST and GPS partials and to solve

them in order to estimate the satellite states, the empirical parameters, and the

gravity field coefficients. This procedure was performed by LLISS (The Large

Linear System Solver [85,86]), which combines the information matrices and

solves for all the desired parameters. Details are described in Appendix B.1.

(E) The difference between the estimated and the truth gravity coefficients

reflects the error level of the estimated gravity field. To the extent that the error

sources assumed in the simulations represent those actually encountered during

the mission, the results will predict the performance of the GRACE mission.
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Figure 3.8 Numerical simulation procedure
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3.5.2 Simulation Parameters

The simulated SST range-rate observations were used for most of the

simulations. The true range-rate observation was obtained from the analytic

equation of (2.25), but the range-rate noise was obtained from the range noise

through the numerical differentiation. The simulated observation is a sum of these

analytic and numerical quantities. This fact is somewhat different from the real

mission, where the range-rate observation is entirely obtained from the range

observation.

The nominal separation angle between the two GRACE satellites was 2°.

For a 450km altitude, this 2° separation angle is equivalent to 238km. The altitude

ranged from 300 km to 500 km. With these altitudes, the GRACE satellites have

15 or 16 orbits over the earth each day. This means that the satellite crosses the

equator that many times considering either ascending or descending orbits only.

That number of tracks limits the estimation of the sectorial terms, which vary in

the longitude direction. The repeat period was chosen such that the resulting

equatorial ground track spacing was less than one half the wavelength of the

smallest geopotential features, which was the minimum requirement for proper

spatial sampling. For example, to estimating up to degree N sectorial terms

requires 2N orbits.  However, this requirement is valid only if the ground track is

not repeated during that period.

One orbit period of the GRACE satellite is about 90 minutes and the

number of observation during one orbit period becomes 5400 / ∆t , where ∆t  is
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the observation interval in seconds.  The Nyquist frequency of these observations

becomes 2700 / ∆t  cpr. With the averaging time of a 10 seconds, the maximum

estimation degree can be 270. In this study, 10-second interval was used for the

SST measurements. Since the GRACE gravity solution is less dependent on the

GPS measurements, longer intervals, 30s or 60s, were used for GPS

measurements.

The geopotential coefficients are estimated as global parameters over a

full data span, from 7 to 30 days. The satellite initial conditions are estimated

every day, and this data span is called an arc. Since the linear estimation theory,

which requires the nominal value to be close to the true value, is used for the

estimation procedure, the nominal orbit should be close enough to the truth orbit.

In general, short arc length produces better orbit agreement with the true orbit, but

it also degrades the accuracy of the gravity estimation. In this study, a one-day arc

length was chosen. Table 3.1 describes the simulation parameters adopted for this

study.
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Table 3.1 List of simulation parameters

Gravitational Forces

Category Truth Nominal

Spherical
Harmonics

EGM96 EGM96 Clone

Non-Gravitational Forces (Accelerometer)

Category Truth Nominal

Atmospheric
Drag

- Cannon Ball Model

   Density: DTM, MSIS
   Winds: HWM93

Solar Radiation
Pressure

- Box Model
   Flux/Reflectivity

Earth Radiation
Pressure

- Box Model
   Albedo/Emissivity

Accelerometer
measurements

(including noise)

Inter-Satellite Measurement Model

Category Truth Nominal

System Noise 1µm/Hz1/2@ 230km

Oscillator Noise ≈1/f
2 in Range-Rate

Multipath Error 3µm per mrad attitude var.

Low-Low Empirical
Bias & Bias-Rate
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Accelerometer Measurement Model

Category Truth Nominal

Bias 10-6 Bias Estimation

Scale Factor 2% Scale Factor Estimation

Random Noise (1+0.005/f)x10-20 m2/s4/Hz

Alignment 0.3 mrad

Attitude Error 0.05 mrad white noise

CM Offset 0.1 mm (w/ CM Trim)

none

Adjustment Procedure

Category Type Remark

Orbit - Altitude
- Inclination
- Eccentricity

300 ~ 480km
87 ~ 90
0.001

Data Span 7 ~ 30 days

Arc length - Initial Conditions
- Gravity Coefficients
  (50×50 ~ 120×120)

1 day each
once per data span

Empiricals - Ct, 1-cpr T & N
  (exclusive from accelerometer)

3 hr ~ 1 day

Accelerometer - Scale, Bias
 (exclusive from empiricals)

once per data span

Range-Rate - Bias & Rate
- Periodic Bias & Rate

45 min
90 min
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3.6 OPTIMAL WEIGHTING OF THE INFORMATION EQUATIONS

As discussed in Chapter 2, the minimum variance estimate of (2.78) is

obtained from the information matrix H R HT −1  and the observation residual y. Let

us consider the minimum variance estimate with different types of observations.

The best estimate can be obtained only if the observation error covariance is

correct since it assumes the statistics of the observation error and a priori error are

known. However, for various reasons, the true error covariance may differ

significantly from the assumed or given statistics, and a systematic method is

necessary to improve the quality of the estimate [85].

If only one type of observation is processed, then the same error levels can

be assigned for all observations and these error levels affect the solution

covariance matrix, P H R HT= ( )− −1 1
, not the solution itself. Unless the covariance

is concerned, the error level is not of interest for single type observations.

However, it becomes a problem when combining different types of observations.

The relative error level between different types of observations affects not only

the solution error covariance, but also the solution itself.

This is a typical problem for the GRACE mission, which needs to

combine two information matrices, H R HT

GPS

−( )1  and H R HT

SST

−( )1 . The former is

generated from the GPS observations and the latter is from the SST observations.

The SST observation has much higher precision than the GPS observation, so the

specified error level for the SST observations should be much lower than the GPS

observations. An improper relative error level may degrade the combined solution
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significantly, and a systematic way to compute the proper noise level is necessary.

Two methods of computing optimal scaling factor, which calibrates the given

error covariance, will be summarized in the following. One is by numerical

iterations and the other one is by a simple simulation. The later spends less

computational time but is only possible for simulations.

3.6.1 Determination of the Optimal Scaling Factor by Iterations

The optimal scaling factor can be derived by the maximum likelihood

estimate [85]. The observation state equation is given by

y x= +H εε (3.18)

Let us consider a k set of observations, where each set has a different covariance

as
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(3.19)

No correlations between different observation sets are assumed. The number of

the total observations is m and each set has mi observations. The observation error

is assumed to have a normal distribution with zero mean value, and its covariance

matrix R is specified as

E iεε[ ] = 0 E Ri i
T

iεε εε[ ] =  i k= 1 2, , ,K (3.20)
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The error covariance, Ri , should be the true value to get the best estimate. The

objective is to find the proper scaling factor to calibrate a nominal error

covariance to a true error covariance. The scaling factor fi  for each observation

set is defined by

R f Ri i i=  (3.21)

Ri  is a nominal observation error covariance and Ri  is a true error covariance. fi

is a scalar value.

The joint probability density function of the set of observation errors R is

given by

F
R

R
m
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A priori information is not considered. Let us choose this scalar function as a

likelihood function. Maximizing this likelihood function gives the maximum

likelihood estimate. Substituting (3.21) into (3.22) and taking a negative

logarithm yields

L F= − ln  

    = ( ) + − + ( )( ) +









−

==
∑∑1

2
2 1

11

m m f R f Ri i i i i
T

i i
i

k

i

k

ln ln lndetπ     εε εε (3.23)
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Minimizing this performance index L is equivalent to maximizing the likelihood

function F.  The true observation error εεi  may be approximated as the predicted

value ε̂εi  by using the best estimate x̂  as follows

ˆ ˆεεi i iH= −y x (3.24)

Taking a partial derivative of L with respect to the scaling factor fi  and the

estimation vector x̂  yields the optimal conditions as

∂
∂
L

f

m

f
H R H

i

i

i
i i

T

i i i= − + −( ) −( ) =−y x y xˆ ˆ1 0 (3.25)

∂
∂
L

f H R f H R H
T

i i
T

i i
i

k

i i
T

i i
i

k

ˆ
ˆ

x
y x





= 







 − 







 =−

=

−

=
∑ ∑1

1

1

1

0 (3.26)
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This is the procedure used in the Large Linear System Solver (LLISS), which was

developed by Yuan [85,86], to determine the optimal scaling factor fi  through an

iterative solution.

This formulation requires the linear predicted (or post-fit) root mean

square (LPRMS) that is the denominator of (3.27), which contains the estimate, x̂i

in (3.28). This LPRMS is a measurement residual level and its accuracy depends

on the accuracy of the estimate x̂i . As the estimate is closer to the true value, the
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LPRMS becomes more accurate. If the initial guess of the scaling factors is not

close to true value, several iterations are required to update the estimate x̂i  and the

scaling factor fi .

3.6.2 Determination of the Optimal Scaling Factor by Simulations

The GRACE simulation requires extensive computation time, and it is

impractical to iterate a large information matrix combination and solver process

for updating the residual y xi iH−( ) ˆ  and the optimal scaling factor fi  in (3.27).

Therefore, an efficient way to get the optimal scaling factor was developed by

Bettadpur [8]. This method gives nearly true scaling factors fi  of GPS and SST

observation errors without iterations. Using these scaling factors, the LLISS

combines GPS and SST information matrices without iterations. The main idea of

this method is to use the truth gravity fields, which are used to generate simulated

observations, when computing the linear predicted RMS (LPRMS). Since major

portion of the unknowns x̂i  is the gravity coefficients, the computed LPRMS with

the true gravity coefficients becomes very close to its true value. This nearly true

LPRMS yields a nearly true scaling factor. Of course, this technique is only

available for simulations, where a true gravity model is available.

Figure 3.9 shows the optimal weighting determination procedure. This is

similar to the standard estimation procedure described in the previous section. The

procedure can be divided into the following steps.

(A) The way of generating simulated observations was identical with the

standard simulation procedure described as Step (A) in Section 3.5.1.
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(B) The second part of adjusting the initial conditions using GPS double

difference observations was identical to Step (B) in Section 3.5.1, but the true

gravity field was used instead of the nominal gravity field. During this process,

the MSODP computes the LPRMS, and it yields the optimal scaling factor for the

GPS observation error. The scaling factor is the ratio of the true error level and

the nominal error level that is specified in the MSODP input deck and recorded on

the GPS information matrix. The nominal value was usually 1 cm for the double

difference observations.

(C) Third step involved generating SST observations using the adjusted

initial conditions from the second step. It uses exactly the same force modeling as

the second step to reproduce the same orbit trajectories. Subtracting these SST

observations from the true SST observations from the first step yields the SST

observation residual. It represents the SST observation error due to noise and

modeling errors except the gravity modeling error.

(D) Fourth step involved removing the bias and bias rate from the SST

observation residual obtained in the third step. This process was same as the

MSODP implementation of empirical parameterizations. This residual value

corresponds to the LPRMS of y xi iH−( ) ˆ . In other words, this simulation method

replaces the iteration method for computing the LPRMS. However, the same

equation of (3.27) is used for determining the scaling factor. Detailed procedure is

described in Appendix B.2.

In most cases, this simulation method was used for computing the scaling

factor, but sometimes the iteration method was used with the initial LPRMS from
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the simulation method to ensure optimal weighting. Usual residual levels were 1

cm for the GPS and 0.05 µm/s for the SST after adjusting the scaling factor.

It should be noted that this method is possible only for simulations where

the true gravity model is available. Real data processing, where the true model is

not available, needs the iteration method described before. However, this

simulation method can be very useful to guess initial scaling factors of iterations

in the real data processing.
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Figure 3.9 Flow chart of the optimal weighting determination

procedure
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3.7 SEMI-ANALYTIC METHOD FOR DEGREE ERROR
PREDICTION

As an efficient way to analyze the effect of various error sources on the

recovery of the high degree gravity field, a semi-analytic method has been

developed by Bettadpur [8]. Unlike the full numerical simulations, which estimate

the individual gravity coefficients, this method provides the gravity error level per

degree. An analytic transfer function was utilized to map the instrument noise

spectrum to the gravity error spectrum. Simulated measurement time series was

decomposed into spherical harmonics to get a measurement noise degree

spectrum. Then, this noise spectrum was mapped into geoid error spectrum by the

analytic equations.

3.7.1 Formulations

If any non-conservative forces, e.g. atmospheric drag, radiation pressure,

and time-dependent potential, are ignored, then the total energy, e.g. the potential

energy plus kinetic energy, will be conserved. Thus, when a satellite passes into a

region where the potential energy of gravity is decreasing due to a perturbing

anomaly, then the loss must be made up by an increase of the kinetic energy, that

is, change of velocity [29,82].

Let us consider the following energy equation

1

2
2v U E− = (3.29)
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where E is the total energy and U is the total gravitational potential energy. v is

the satellite velocity. U and v can be decomposed into a reference component and

a disturbance component as

U U T= +0
'

v v v= +0 ∆ (3.30)

U0  is the nominal gravity potential representing the gravity at the reference

ellipsoid, which consists of even zonal harmonics [72]. T'  is the disturbing

potential representing the difference between the actual gravity and the reference

gravity. ∆v  denotes the velocity variation due to disturbing gravity potentials.

The reference velocity v0  is related to the reference gravity potential U0  as

following energy equation:

1

2 0
2

0v U E− = (3.31)

Substituting (3.30) into (3.29) and ignoring higher order term of the velocity

variation yields

1

2 0
2

0 0v v v U T E+ − − =∆ ' (3.32)

Comparing (3.31) and (3.32) yields the relationship between the velocity variation

and the disturbing potential at the satellite altitude:

∆v
v

T= 1

0

' (3.33)
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This equation is for one satellite, but it also implies that the velocity difference for

each of the two satellites is directly proportional to the geopotential difference at

their respective locations:

∆ ∆v v
T

v

T

v2 1
2

20

1

10

− = −
' '

(3.34)

If the velocity variation is perfectly measured, then the disturbing potential can be

obtained perfectly. However, there exists always measurement noise and it

prevents the accurate recovery of the disturbing geopotential.

The objective of this section is to figure out how the measurement noise

propagates to the geopotential estimate. The determination of the actual disturbing

potential is not of interest. For this kind of works, it is better to manipulate in

spectral domain rather than in space domain, and the relationship between the

space domain and the spectral domain needs to be derived. The velocity variation

can be expressed in the spectral domain using the spherical harmonics as

∆ ∆ ∆v P v m v mnm nm
c

nm
s

m

n

n

φ λ φ λ λ, sin cos sin( ) = ( ) +( )
==

∞

∑∑
00

(3.35)

where φ λ,( ) are spherical coordinates: geodetic latitude and longitude. The

subscripts n and m denote degree and order, respectively. Pnm  are the normalized

Legendre associated functions, and ∆vnm
c  and ∆vnm

s  are the harmonic coefficients.

The disturbing potential at the satellite altitude can be expressed in the similar

way:
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This expression does not include two terms, n = 0 for the two body term and n =

1 for the Earth center offset from the coordinate origin. Since the velocity

equation of (3.35) has these two terms, the velocity errors in these terms are not

mapped into the gravity potential error. For convenience, let us define T as the

disturbing potential on Earth's surface, r = Re, and T′ as the disturbing gravity

potential at the satellite altitude, r = r.  The coefficients Cnm
'  are obtained by

subtracting the even zonal coefficients of the normal gravity field from the full

spherical harmonic coefficients [72]. The error variance of T may be defined as an

average of the expectation of the squared error over the unit sphere. Due to the

orthogonality, the variance of T'  has a simple relationship with the degree error

variance of T as follows

σ δ σ δ2
2 2

2

2

T
R

r
Te

n

n
n

'( ) = 



 ( )

+

=

∞

∑ (3.37)

where the n-th degree error variance of T is given by

σ δ δ δn nm nm
m

n

T C S2 2 2

0

( ) = +( )
=

∑ (3.38)

The error variance of the velocity variation is obtained in the same way. After

substituting (3.35) and (3.36) into (3.33) and taking error variances, the

relationship between the degree error variances of velocity and gravity is given by
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
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+

(3.39)

The circular velocity, v GM r0 = /  replaces the reference velocity v0 . This is an

equation not for the error in the range-rate measurement assuming only the

velocity variation of one satellite. The equation for the range-rate will be depicted

as follows.

For the low-low satellite-to-satellite mission, the range-rate observable is

the velocity difference component along the line-of-sight. For small fixed

separation angle θ  and circular reference orbit, this observable can be

approximated as the velocity difference between two satellites:

˙ ˆρ = −( ) ⋅v v e1 2 12  = −( )v v1 2 2
cos

θ

    ≈ −∆ ∆v v1 2 for small θ (3.40)

In the case of GRACE mission, the reference separation angle is 2° so that it is

appropriate to use the small angle approximation. Since two satellites have the

same reference velocity, the velocity difference of two satellites is equivalent to

the difference of velocity variations from the reference velocity. The subscript 1

and 2 represent the location of the two satellites traveling at the same altitude and

on the same orbit plane.

The range-rate is not only a function of the separation distance but also a

function of direction. However, it is difficult to retain the directional property
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through spectral mapping, so an average value is used instead. The root-mean-

square (RMS) of the range-rate over all possible directions is defined by [29]

ρ̇
π

α
π

= −( )∫1

4 1 2

2

0

2
∆ ∆v v d (3.41)

The variance of this RMS value over the unit sphere σ  is given by

σ ρ
π

ρ σ
σ

2
21

4
˙ ˙( ) = ( )∫ d

           = ( ) − ( )σ 2
1 2∆ ∆ ∆v v vcov , (3.42)

Let us assume the velocity variation ∆v  is isotropic and homogeneous on the

sphere. The covariance function can be expanded as

cov , cos∆ ∆v v v Pn
n

n1 2
2

2

( ) = ( ) ( )
=

∞

∑σ δ θ (3.43)

Pn  is the Legendre function and θ  is the separation angle between two satellites.

The degree variance of the range-rate is then related to that of the velocity

variation as

σ δρ σ δ θn n nv P2 2 1˙ cos( ) = ( ) − ( )[ ] (3.44)

Since the factor, 1 − ( )[ ]Pn cosθ , is less than 1 in most degree, the range-rate error

is lower than the velocity error. This is one of the advantages of using the inter-

satellite range-rate measurements instead of the velocity measurements.
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Substitution of (3.44) into (3.39) yields the spectral relationship between the

range-rate error and the gravity potential error as

σ δ
θ

σ δρn
n

e

e

n

nT
P

R

GM

r

R
2

2 1

21

1
( ) =

− ( )

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( )
+

cos
˙ (3.45)

If the degree error variance of range-rate is available, that of the gravity can be

obtained from the above equation. That degree variance is comparable to the

degree error variance or the degree difference variance obtained by numerical

simulations.

3.7.2 Prediction Procedure

The semi-analytic error prediction method used in this study is different

from the conventional analytic error prediction methods in obtaining the

measurement error variance [8]. For example, Jekeli’s method [29] assumes the

measurement noise as a white noise, which has uniform power spectral density

over all frequency range and does not have correlation over time and. It can not

accommodate the complicated measurement error characteristics that come from

various error sources. In the case of the GRACE mission, the measurement error

comes from not only the range-rate noise but also includes the effect of the

accelerometer noise and other error sources. Moreover, these errors are better

approximated as colored noises that have correlations over time and frequency

dependent power spectrum. To overcome this complicated noise-modeling
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problem, the semi-analytic method used numerical simulations to compute the

degree error variance of the measurement noise instead of the analytic white noise

assumption. However, the use of an analytic mapping function from the noise

spectrum to the geoid error is the same as the conventional methods. A summary

of the prediction procedure will be described as follows.

(A) First step is to realize the range-rate measurement noise due to various

error sources. This step is identical to the determination of the optimal weighting

procedure described in Section 3.6.2. The same type of the SST measurement

residual (noise) is obtained.

(B) The second step is to map the measurement error in the space domain

into the degree variance in the spectral domain. The range-rate residuals over each

specific area, which is called a bin, are averaged, and then each bin is assigned

one residual value. All bins have the same latitude and longitude lengths and

cover the entire sphere. To guarantee all the bins have enough measurements to

average, global coverage is required. That is, a polar orbit with a long repeat

period, usually 30 days, should be used. The binned data is converted to spherical

harmonics and then the degree variances of the measurement error are obtained.
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4 INTER-SATELLITE MEASUREMENT ERRORS

4.1 INTRODUCTION

The GRACE satellites will use the dual one-way microwave ranging

systems to measure the range change between two satellites. Each satellite has

identical transmission and reception subsystems and transmits the carrier phase

signals to the other satellites. The received signals at each of the two satellites are

combined on the ground to reduce the noise due to oscillator instability. This

process removes most of the oscillator drift effect, whose frequency range is

lower than 1 KHz. The oscillator noise, which remains after the combination

process, depends on the oscillator characteristics and the dual-one way filter. The

later may be a function of frequency offset, carrier frequency, and separation

distance.

The other types of SST noise include the system noise, which comes from

the receiver subsystem, and the time-tag error due to the different clock error for

the two satellites. The multipath noise is important as well, and it is due to the

indirect microwave signals that are reflected around antenna horn. This noise

level depends on the reflectivity of front surface of the satellite and the satellite

attitude.

This chapter describes the error sources that affect the SST measurements.

The procedures to generate major error sources, which include oscillator, system,

and multipath noises, are described with the simulation results. These error

sources were realized as the range measurement noise, and then converted into the
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range-rate noise by the numerical differentiation. Another way is simulating the

dual one-way phase measurements, and then converting into the range

measurements. This phase measurement simulation results are presented for

verifying the range simulations.

4.2 OSCILLATOR NOISE

4.2.1 Characteristics of the GRACE Oscillator

Let us consider an oscillator signal that is presented as follows [48]

A t A f t t( ) = + ( )[ ]0 02sin π δφ (4.1)

where A0  and f0  are the nominal amplitude and frequency, respectively, with

corresponding phase error δφ t( ) . In this section, the radian is the unit of the phase

φ t( )and phase error δφ t( ) . It is noted that the cycle is the unit of the phase ϕ t( ) in

other sections. The oscillator's instantaneous phase is defined by

φ π δφt f t t( ) = + ( )2 0 (4.2)

The phase error δφ t( )  may be related to the frequency error δf  as follows

δφ π δ ξ ξ δφt f d t
t

t
( ) = ( ) + ( )∫2

0
0 (4.3)

Its instantaneous frequency is defined as the time rate of the change of phase
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f t
t

f
t( ) = ( ) = + ( )˙ ˙φ

π
δφ

π2 20 (4.4)

Then, the fractional frequency deviation from the nominal frequency is defined as

y t
t

f

f

f
( ) = ( ) =δφ

π
δ˙

2 0 0

(4.5)

In terms of this variable, the most commonly used measure of stability is the

Allan variance, which is defined in the following way. The average fractional

frequency error over each sampling period is represented by

y y t dtk t

t

k

k= ( )
+

∫1

τ
τ

(4.6)

where τ  is a fixed sampling period. The Allan variance is defined as

σ τy k kE y y2
1

21

2
( ) = −( )[ ]+ (4.7)

where E denotes the expected value. This measure uses only adjacent samples and

makes the calibration and sampling periods identical. The Allan variance is a

measure of frequency stability and it is dimensionless.

The GRACE satellite uses an ultra stable oscillator (USO) to generate the

base frequency of the K/Ka band signals. The USO for GRACE is a quartz crystal

oscillator, and is the same kind of USO as that used in for the Mars Observer and

Mars Global Surveyor (MGS) mission. The Allan variance of these USOs were
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measured by flight tests. Figure 4.1 shows the specified Allan variances of the

GRACE USO for different averaging times [19].
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Figure 4.1 Allan variance of the GRACE oscillator

Each region may be classified into flicker noise, white noise, and integral white

noise based on its slope. There exist formulations for converting this Allan

variance to two-sided power spectral density (PSD) of the fractional frequency

deviations [40,48]. These conversion formulations are represented in Table 4.1 for

each type of noise.

Table 4.1 Allan variance and power spectral density

Error Source y(t) Allan Variance σ y t2( ) Spectral Density S fy( )
White Noise N0 / τ N0

Flicker Noise 4 2 1ln( )N N f1 /

Integral of White Noise 2 32
2π τ( ) N / N f2

2/
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Using these formulations, the PSD of the fractional frequency deviation may be

represented as Figure 4.2. It is in units of cyc2/Hz.
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Figure 4.2 Two-sided frequency spectrum of the GRACE oscillator

Another representation of the frequency deviation is the single side-band

phase noise spectrum, L f( ) . The phase noise is the integration of the frequency

noise, and can be related to the fractional frequency deviation y (frequency error)

by combining (4.3) with (4.5):

δφ π ξ ξt f y d
t

( ) = ( )∫2 0 0
(4.8)

The spectrum of the phase and frequency noise can be related as

F t f F y d f
f

F y t
t

δφ π ξ ξ π
π

( )[ ] = ( )[ ] = 





( )[ ]∫2 2
1

20 0 0 (4.9)
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where F[ ] represents the Fourier transform. By squaring these terms, one can

express the single side-band phase noise spectrum L f( )  in terms of the two-sided

frequency spectrum S fy( )[44]:

L f
f

f
S fy( ) = ( )0

2

2 (4.10)

It is in units of rad2/Hz and the nominal frequency f0  should be specified.

Sometimes oscillator stability is completely specified in terms of this single side-

band phase noise instead of the Allan variance. The nominal output frequency f0

of the GRACE USO is 4.832 MHz. Figure 4.3 shows its single side-band phase

noise spectrum.
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Figure 4.3 Single side-band phase noise spectrum of the GRACE oscillator
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4.2.2 Transfer Function of the Oscillator Noise

The single side-band phase noise in Figure 4.3 goes through several filters

before it can be realized as the range noise. The reduction of the frequency

instability effect on the range measurement is described in Chapter 2. However,

some oscillator noise remains after the dual one-way ranging filtering and this

section describes the remaining noise characteristics by means of a spectral

analysis developed by Thomas [71].

The combined phase equation (2.14) of Chapter 2 contains the three error

terms related to the phase and time tag errors:

δ δ δ τ δ δΘ ∆ ∆ ∆ ∆t f f f f t t f f t t( ) = +( ) + −( ) −( ) + −( ) −( )1 2 1 2 1 2 1 2 1 2 (4.11)

The first term is due to the phase error only, and the second term is due to the

time tag error only. The third term is due to the coupling of the phase error and

time tag error and is much smaller than the other terms. The unit of the phase

error δϕ  is cycle while that of δφ  in the previous section is radian. Equation

(4.11) can be rewritten with the phase error δϕ i  without the substitution of

δϕ δ˙
i it f t( ) = ( ):

δ δϕ δϕ τ δϕ δϕ τΘ t t t t t( ) = ( ) − −( )[ ] + ( ) − −( )[ ]1 1 2 2

          + −( ) −( )f f t t1 2 1 2∆ ∆ (4.12)

The phase and time tag coupling term is ignored.

The time tags are to be corrected in ground by using the GPS

measurements and the IGS network data. With these corrected time tags, the
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phase measurements are to be interpolated to the value at the nominal sampling

time. Different approaches may be applied to correct long and short period parts.

The long period (> 6hr) error can be adjusted by the GPS clock solution. Two

approaches are being considered for the short period time-tags [71]. (A) First

approach (USO time-tag) is no adjustment of the short period time tags. The same

time tags assigned by the GRACE USO clock signals are used after the long

period correction. (B) Second approach (GPS time-tag) is the adjustment by the

GPS clock solution, and the time-tag error is independent of the GRACE USO

error. The selection depends on which clock data is more accurate in the short

period. Current estimates suggest that GPS clock solution error might be better

than the USO-induced clock error, at least lower signal band frequencies, e.g.

lower than 1mHz [71]. The following derivation describes the transfer function of

the dual one-way ranging for each approach.

(A) In case of the first approach, the short period time tag error is caused

by the same source of the USO error. The time tag error ( ∆t t tobs= − ) can be

expressed as the integration of the clock frequency error:

∆t t
f

f
di

i

t

t
( ) = − ( )∫

δ ξ
ξ

00

(4.13)

The initial time tag error is ignored. The time tag error can be related to the phase

error by combining (4.3) with (4.13):

∆t
t

fi
i

i

= − ( )δϕ
(4.14)
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The relationship 2πδϕ δφi i=  is applied. When the oscillator runs faster than a

nominal, the phase error has a positive value but the time tag error, which is the

correction from the nominal time, has a negative value. Therefore, the positive

phase error is related to the negative time tag error. Substitution of (4.14) into

(4.12) yields the following dual one-way phase error due to the oscillator

instability:

δ δ δΘ Θ Θt t t( ) = ( ) + ( )1 2 (4.15)

where

δ δϕ δϕ τ δϕΘ1 1 1 1 2
1

1

t t t f f
t

f
( ) = ( ) − −( )[ ] − −( )





( )

δ δϕ δϕ τ δϕΘ2 2 2 1 2
2

2

t t t f f
t

f
( ) = ( ) − −( )[ ] + −( )





( )
(4.16)

δΘi t( ) represents the phase error of the i-th satellite oscillator after the dual one-

way ranging filter. The transfer function from the phase error δϕ i t( )  to the filtered

phase error δΘi t( ) may be given by
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For SST1’s oscillator, the dual one-way ranging filter can be represented as

follows [71]

G f
f

f
i f1

2

1

2

2( ) = − − ⋅( )







exp π τ (4.18)

There exists an offset between the SST1 and SST2's carrier frequencies, f1 and f2 ,

for either K and Ka band. τ is the time of flight of the signal between two

satellites. Although τ is different for each one-way phase measurement, this

difference is less than 0.005 µs and can be neglected for this oscillator noise

realization. A large magnitude of the filter implies more oscillator noise in the

phase measurement. Considering the first term of the above equation, one can find

that a smaller frequency offset between f1 and f2  will increase the efficiency of

the dual one-way filtering and yields lower range noise. However, due to signal

interference and other design consideration, there exists a bound on its frequency

offset and both frequencies should not be equal.
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(B) In case of the second approach (GPS time-tag), the second terms of

(4.16) are not necessary. By using the same spectral analysis, the dual one-way

ranging filter becomes

G f i f1

2
1 2( ) = − − ⋅( )[ ]exp π τ (4.19)

In this approach, a separate phase error must be added to account for the GPS

clock solution error.
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Figure 4.4 Effective filter applied to oscillator noise by dual one-way

ranging for varying frequency offset

Figure 4.4 shows the magnitude of the dual one-way ranging transfer

function for the first and second approaches. The second approach provides much

better low frequency performance, but both approaches have similar performance

at the high frequency. In order to obtain conservative results, the first approach

(GRACE USO time-tag) was applied in this study.
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The PSD of phase measurement noise due to oscillator drift is obtained by

multiplying the phase noise L f( )  and the dual one-way ranging filter G f1( ).

Multiplying this resultant filter PSD by two to account of two oscillators, dividing

by 2 2π( ) to convert from rad2 to cycle2, and multiplying by f fK Ka/ / 0

2( )  to

translate to K/Ka band.

S f G f
f

f
L fK Ka

∆Θ ( ) = ⋅ ( ) ⋅ 











( )2
1

21

2

0

2

π
/ (4.20)

The range noise is related to the dual one-way phase noise as follows:

R
c

f f
=

+1 2

Θ or R e= λ Θ (4.21)

where λe  is an effective wavelength for either K or Ka band. The same

relationship is applied to the noise components. The PSD of the range error due to

the oscillator drift becomes [71]

S f
f

f
L f G fe K Ka

∆ρ
λ
π

( ) = ⋅ 











( ) ⋅ ( )2
2

2

0

2

1
/ (4.22)

Since the wavelength can be replaced in terms of the frequency as λe K Kac f≈ / /2 ,

the carrier frequency fK Ka/  is cancelled and the square root of the range error PSD

becomes as follows

S f
c

f
L f G f∆ρ π

( ) =






⋅ ( ) ⋅ ( )1

4
2

0
1 (4.23)
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The range-rate measurement is obtained by numerical differentiation of

the range measurement. Since differentiation in the time domain is equivalent to

frequency multiplication in frequency domain, the range-rate filter is represented

by the square of the angular frequency as

RR f f( ) = ( )2
2π (4.24)

Since the filter definition used in this study corresponds to the PSD, i.e. square of

the Fourier transform, the range-rate filter has the square value. It implies that the

square root of the PSD of the range-rate noise grows linearly as the frequency

increases. The square root of the range-rate error PSD is given by

S f S f RR f f S f∆ ∆ ∆ρ̇ ρ ρπ( ) = ( ) ( ) = ( ) ( )2  (4.25)

Figures 4.6 and 4.7 show the PSD of the resultant range and range-rate

filters, respectively. These are not the effect of the oscillator drift itself but the

effect of the residual oscillator drift after the dual one-way ranging filter. Since

the range-rate noise PSD is the multiplication of the range PSD and the

differentiation filter 2
2πf( ) , the relative magnitude of the range-rate noise

increases as the frequency increases. This is why the range-rate noise start to grow

in the high frequency region. It is noted that the oscillator drift effect on the range

or range-rate measurement is dominant in the low frequency regions. It is

opposite to other high frequency dominant noises, e.g. system or multipath noise.

In case of the real phase measurement processing, high rate phase samples

(~0.1s) pass through a low pass filtering to yield low rate samples (~10s). This
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process distorts the signal characteristics, and the transfer function of this low

pass filtering needs to be included in the range error transfer function. However,

this low pass filtering is under development and is not considered in this study.

4.2.3 Oscillator Noise Realization

Major parameters that determine the oscillator noise, which is the residual

of the USO drift after the dual one-way ranging filtering, are the microwave

frequency, frequency offset, and the time-of-flight. Although these values are still

not determined yet, certain values were selected among many candidates for

simulation purpose. To obtain a pessimistic noise level, rather than an optimistic

level, several factors were taken into consideration when selecting those design

parameters. For example, a larger frequency offset causes less efficient dual one-

way filtering, and a higher altitude or larger separation angle implies a longer

separation distance and longer time-of-flight, which causes less oscillator drift

cancellation. Between K and Ka band frequencies, K band, f = 24 GHz, with

frequency offset ∆f = 1.5 MHz was chosen to get a feasible highest noise level.

In a real mission scenario, the separation distance will vary with time and

the oscillator noise, more precisely the residual after the dual one-way ranging

filtering, will change as well. Therefore, an actual oscillator noise realization

needs a separation distance variation. However, in this simulation study, a fixed

separation distance was used to maintain a single oscillator noise for different

orbits. The operating orbit altitude will vary between from 500 km and 300 km,
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and 450 km was selected because of its relatively higher altitude. The 450 km

altitude with a 2° separation angle leads to a the separation distance of 238 km.

Since the variation of the time-of-flight due to altitude is very small as long as a

fixed separation angle is applied, the oscillator noise variation due to altitude can

be ignored without loss of generality. Instead, the separation angle is much more

important, and the variation due to separation angle is discussed in Chapter 6.

Table 4.2  shows the simulation parameters used in this study.

To realize the effect of oscillator drift error on the range measurement, the

resultant transfer function was approximated by dual lag compensation. Instead of

realizing every sub-transfer function, it is more efficient to realize the resultant

transfer function only. Since the PSD of the range noise has a slope of 1 4/ f  and

single lag compensation has a slope of 1 2/ f , dual lag compensation was used as

follows [41]

Table 4.2 Simulation parameters for generating oscillator noise

Frequency(f1) 24 GHz

Frequency Offset (f2 - f1 ) 1.5 MHz

Altitude 450 km

Separation Angle 2 °
Separation Distance 238 km

Time-of-Flight 0.80 ms
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α ω
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(4.26)

where α > 1, ω αωf i=  and β > 0  are adjustable within a specified range. The

details on determining these values are described in [48]. A higher order transfer

function can be applied by using several numerical packages, e.g. MATLAB, but

even higher order transfer functions yielded similar results and the dual lag

compensation was used for its simplicity.
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Figure 4.5 Time series of the SST range noise due to the oscillator drift

The noise time series was generated by MATLAB's continuous simulation

function. The input white noise with the PSD of 1 m2/Hz passed through the

approximated transfer function to generate the noise time series. Figure 4.5 shows

the time series of the range measurement noise due to the oscillator drift. Due to
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its strong long wavelength characteristic, the leakage may harm the PSD of that

time series. Therefore, the Hanning window function was applied to compute the

PSD for leakage reduction purpose. Although this noise level is relatively large,

the low frequency part of this noise can be effectively removed by applying

piecewise empirical parameters.

Figure 4.6 compares the simulated noise PSD with the design range noise

PSD in (4.23). The range-rate noise time series was obtained by numerical

differentiation of the simulated range noise time series. Figure 4.7 compares the

simulated range-rate noise PSD with the design PSD of (4.25).
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Figure 4.7 Power spectral density of the SST range-rate noise

 due to oscillator drift (Design vs. Simulated)

4.3 SYSTEM NOISE

Another type of SST measurement noise is the system noise, which is due

to the receiver noise. It can be approximated as white noise for the range

measurement. Its magnitude depends on the distance between two GRACE

satellites, and the nominal value is the PSD of (1 µm/√Hz)2 at 230 km separation

that is the distance for 2° separation [71]. This is the value after a dual-band

calibration to remove the ionosphere effect with the SNR (Signal-to-Noise Ratio)

of 69 dB-Hz. The SNR decreases as the separation distance increases, and the

system noise is assumed to increase linearly as the separation increase.

Since the noise variation is small for altitude change, the same system

noise was used for all simulations, except the parameter study on the separation
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distance, which is covered in Chapter 6. The noise variation due to temperature

was not considered in this study. The range-rate noise may be obtained by

numerical differentiation of the range noise. Therefore, the range-rate noise PSD

is obtained by multiplying the range noise by (2π f)2. Figure 4.8 shows the PSD of

the range and range-rate noises due to the system noise. It is noted that the range-

rate noise due to the system noise is dominant in the high frequency range since it

grows as frequency increases.
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Figure 4.8 SST measurement error due to the system noise

4.4 TIME -TAG ERROR

This section quantifies the range error due to the measurement time-tag

errors. In Section4.2.2, two types of the time-tags were considered: USO and GPS

time-tags. In case of the USO time-tag, the range error due to the time-tag error is
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correlated to the oscillator noise, so that the range error due to the oscillator noise

already includes the time-tag error effect. The following description is more

directed to the GPS time-tag case, where the time-tag error is treated as an

independent error source (separated from the oscillator noise).

Most of the oscillator drift errors can be canceled out by combining two

one-way measurements. However, if the measurement times of two satellites are

different, there will be some additional error. Since initial measurement time tag

difference may be relatively large, e.g. 1ms, interpolation of the SST

measurement is required to make the two measurement time tags close each other

as much as possible. This interpolation process may utilize the corrected time tag

using the GPS measurements. There would be still time tag error even after this

interpolation, and the impact of this residual on the SST range measurement is

analyzed in this section.

Equation (2.14) of Chapter 2 describes the dual one-way phase

measurement with the time tags of ∆t1 and ∆t2. Its third and fourth terms

represent the time tag error:

δ δ δΘ ∆ ∆t f f f f t t( ) = +( ) − +( )[ ] −( )1 1 2 2 1 2

= −( ) −( ) + −( ) −( )f f t t f f t t1 2 1 2 1 2 1 2∆ ∆ ∆ ∆δ δ (4.27)

where fi  represents a constant nominal frequency and δfi  does a frequency

instability. The first term is due to the time tag errors and the second term is due

to the coupling between the phase error and the time tag error. Since the

magnitude of the frequency error is much smaller than that of the nominal
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frequency, δf fi i/ ≈ × −2 10 13, the second term is very much smaller than the first

term and it can be ignored. Of interest is not the individual time tag errors, ∆t1

and ∆t2, but the time tag error difference, ∆ ∆t t1 2− . Therefore, a new time tag

error definition ∆ ∆ ∆t t t= −1 2 is used in the following derivation. The range

measurement error due to the time tag error can be obtained by multiplying the

phase error (4.27) by c f f/ 1 2+( ):

δρ = −
+

c
f f

f f
t1 2

1 2

∆ (4.28)

This error depends on the frequency offset ∆f f f= −2 1 as well as the time tag

error ∆t .
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Figure 4.9 shows the variation of the range error δρ  for different

frequency offsets ∆f f f= −2 1. Only the K-band (24 GHz) results are shown since

the K-band error is grater than the Ka-band error is for a same amount of the time-

tag error. It is clear that a larger frequency offset causes a larger range error.

If the nominal requirement of the range error is set as 1 µm/s, the

corresponding time-tag error for ∆f = 1.5 MHz should be less than 80 pico

second. However, if this time-tag error is constant over some period, it may not

affect the gravity solution since the primary measurement is not the true range but

the biased range. Of interest is not the absolute magnitude of the time-tag error

but the stability of it. The single one-way phase measurements would be

interpolated before forming a dual one-way phase measurement using the time tag

correction from the GPS and the ground stations. In that case, the time tag error

residuals after this correction becomes much less than the original time tag errors

and replace the time tag errors in the above equations. In the IGS network, the

time-tag difference is stable, and is estimated accurately to better than 70 pico

second over a day after a linear term is removed [71]. Since the GRACE satellites

have more GPS satellites in view, their GPS solution should be at least as good as

an IGS station, if not better. Therefore, the range error can be within the

specification.

Because of this low level of noise, the time-tag error was not implemented

in this study. In case of actual data processing, the time-tag error can be

efficiently reduced during pre-processing.
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4.5 INSTANTANEOUS RANGE CORRECTION

The dual one-way ranging description in Chapter 2 assumed the same

time-of-flight τ for both satellite phase signals. Since the two satellites are always

moving in a similar direction, the time-of-flight for the phase signal from the

leading satellite to the trailing satellite is shorter than the time-of-flight from the

trailing one to the leading one. The actual range measurement derived from the

dual one-way ranging phase measurements contains both of these different time-

of-flights. Since the estimation equations derived in Section 2.2 utilize the

instantaneous range between two satellites at specified time, it is necessary to

convert the phase-derived range into the instantaneous range. However, any other

errors in the phase-derived range, e.g. bias, are not affected by this conversion.

ρ τ1

2

1

2= c
SST t2 1

2( )− τ

SST t1 2

1( )− τ

SST t1( )

∆2

∆1

SST t2( )

ρ τ( )t c=
ρ τ2

1

2

1= c

Figure 4.10 Relationship between the instantaneous range ρ( )t  and
 the phase-derived ranges ρ1

2 and ρ2
1.
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Figure 4.10 illustrates the relationship between the instantaneous range

ρ τ= c  and the phase-derived ranges ρ τ2
1

2
1= c  and ρ τ1

2
1
2= c . The instantaneous

range ρ  is the distance between the two satellites at the same nominal time t.  The

phase-derived range ρi
j  is the travel distance of the phase signal that is transmitted

by j-th satellite at t i
j− τ  and received by the i-th one at t . The displacement vector

∆∆i  represents the displacement of the i-th satellite for τ j
i .

The relationship between the instantaneous range ρ t( )  and the actual dual

one-way range observable can be derived in the following way. In Section 2.2.2,

the dual one-way ranging observable Θ t( )  is represented as follows:

Θ t f f f f( ) = +( ) + +( )1 2
1

2 1
2

1 2
1

2 1
2τ τ δ τ δ τ

         + −( ) −( ) + −( ) −( )f f t t f f t t1 2 1 2 1 2 1 2∆ ∆ ∆ ∆δ δ

         + + +N d ε (4.29)

The first and second terms contain two time-of-flight values. The first term

represents a nominal value and the second term represents the coupling effect

between the time-of-flight difference and the frequency error δfi . Since the

magnitude of the frequency error is much smaller than that of the reference

frequency, δf fi i/ ≈ × −2 10 13, the second term is much smaller than the first term

and can be ignored without loss of generality. The other terms are time tag error

and miscellaneous terms. Without the oscillator drift, cycle delay, and ambiguity

terms, the observable Θ t( ) , the sum of two phase measurements, may be given by

 Θ t f f( ) = +1 2
1

2 1
2τ τ (4.30)



119

It can be converted into a phase-derived range equation by multiplying the speed-

of-light c and dividing by the sum of the carrier frequencies:

c

f f
t

f f
f f

1 2 1 2
1 2

1
2 1

21

+
( ) =

+
+( )Θ ρ ρ (4.31)

Two ranges ρ2
1  and ρ1

2 can be related to the instantaneous range ρ  at t, which is

used for estimation process:

ρ2
1

1 1 1 1= = −( ) −( )F
T

( , )ρρ ∆∆ ρρ ∆∆ ρρ ∆∆

ρ1
2

2 2 2 2= = +( ) +( )F
T

( , )ρρ ∆∆ ρρ ∆∆ ρρ ∆∆ (4.32)

In this expression, ∆∆i  is the vector from the position of i-th satellite atτ j
i  to the

position at t.  The instantaneous range vector ρρ is equivalent to r r e1 2 12− = ρˆ  and

its magnitude is the instantaneous range ρ . The right sides can be expanded by

the first order Taylor series about the instantaneous range ρ  as

ρ ∂
∂j

i
i

i

i
iF

F
i

i

≈ [ ] +








 ⋅

=
=

∆∆
∆∆∆∆

∆∆
0

0

( i=1,2 ) (4.33)

These first order approximation becomes the sum of the instantaneous range ρ

and the projection of the displacement vector ∆∆i  on the line-of-sight (LOS) vector

ê12 :

ρ ρ2
1

1 12≈ − ∆∆ T ê

ρ ρ1
2

2 12≈ + ∆∆ T ê (4.34)



120

Substitution of Eqns. (4.34) into (4.31) expresses the phase-derived range as a

function of the instantaneous range and other terms:

c t

f f

f

f f

f f

f f
T TΘ( )

+
= −

+
−( ) − −

+
( )

1 2

1

1 2
1 2 12

1 2

1 2
2 12ρ ∆∆ ∆∆ ∆∆ˆ ˆe e (4.35)

The second term, which is the projection of the displacement vector difference on

the LOS vector, can be related to the instantaneous range-rate ρ̇  at time t in the

following way. The displacement vector ∆i can be approximated by the product of

the velocity at time t and the time-of-flight τ j
i :

∆∆i i i j
i

i j
it t t= ( ) − −( ) ≈ ( )r r rτ τ˙ (4.36)

Using this relationship, the second term of (4.35) becomes

∆∆ ∆∆1 2 12 2
1

2 12−( ) ≈ − ( )( )T Ttˆ ˙ ˙ ˆe r eρτ τ∆ (4.37)

where the time-of-flight difference ∆τ τ τ= −1
2

2
1 and the instantaneous range-rate

˙ ˙ ˙ ˆρ = ( ) − ( )( )r r e1 2 12t t
T

 are used. The instantaneous range ρ can be expressed as a

sum of the phase measurement and the correction term after substitution of (4.37)

into (4.35),

ρ ρ ρ= +obs TOF (4.38)

where ρobs

c t

f f
= ( )

+
Θ

1 2
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The second term is the instantaneous correction term as follows:

ρ ρτ η τ η τTOF

f

f f

f

f f

f f

f f
=

+
−

+
+ −

+
1

1 2
2
1 1

1 2
2

1 2

1 2
2 1

2˙ ∆ (4.39)

where η2 2 12= ( )˙ ˆr et T  is a velocity component along the LOS vector. The first term

represents the range variation during the time-of-flight and the second term does

the time-of-flight difference. The last term results from the frequency offset. For

the error analysis of the correction algorithm, of interest is not its magnitude but

its accuracy. Therefore, it is necessary to quantify how accurately the individual

parameters can be predicted. Table 4.3 lists the magnitude and accuracy

assumptions of those parameters in (4.39). These accuracy levels are based on the

estimation error using the GPS measurements, which are independent of the SST

measurements. Therefore, these accuracy levels can be obtained during the pre-

processing.

Table 4.3 Magnitude and accuracy assumptions on the instantaneous

range correction related parameters

magnitude accuracy

Range ρ < 500km < 1cm

Range-Rate ρ̇ < 1m/s < 0.1 mm/s

TOF τ < 2×10-3 sec < 3×10-11 sec

TOF difference ∆τ < 5×10-8 sec < 1×10-13 sec

velocity  η1 < 8km/s < 1cm/s
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With the dynamic estimation approach, which is used in this study, the

SST observation signals were generated with a truth gravity field and then

compared with the nominal signals generated with a nominal gravity field. These

error levels are far lower than the accuracy levels in the table. Since the

estimation accuracy by the dynamic approach depends heavily on the accuracy of

the nominal gravity field, a smaller error level would be possible after an

improved gravity field is obtained.

Since two GRACE satellites have almost the same altitude and GPS

satellite views, it is ideal to use the double-difference measurements between two

GPS satellites and two GRACE satellites. This method can estimate the inter-

satellite range and range-rate with much higher accuracy than the conventional

approach, i.e. forming the double difference measurements between two GPS, one

low satellite, and one ground station.

The time-of-flight (TOF) accuracy in the table results from the range

accuracy of 1 cm. The magnitude and accuracy of the TOF difference ∆τ result

from the following analogy. Each satellite moves about 7.5 m for 1 ms that is a

usual time-of-flight, and maximum ∆τ happens when both satellites moves along

the same way, i.e. along the LOS. Therefore, the maximum becomes 5×10-8 sec

for the time-of-flight of 15 m = 7.5 m + 7.5m as follows

∆τ
τ τ τ≤ + ≈ ≈ × −˙ ˙ ˙

sec
x x x1 2

1
2 1

2
82

5 10
c c c

(4.40)
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Its estimate of the accuracy follows from the accuracy of the velocity and TOF

estimates

δ τ δ τ δ τ∆( ) ≤ ( ) + ( ) ≈ −2 2
10 13˙ ˙

sec
x x

c c
(4.41)

The instantaneous correction accuracy δρTOF  can be obtained by the following

variational equation

δρ δ ρ τ ρδ τTOF

f

f f

f

f f
≈

+
( ) +

+ ( )1

1 2
2
1 1

1 2
2
1˙ ˙

−
+

( ) + ( )[ ] + −
+

( ) + ( )[ ]f

f f

f f

f f
1

1 2
2 2

1 2

1 2
2 1

2
2 1

2δ η τ η δ τ δ η τ η δ τ∆ ∆ (4.42)

The products of two error terms are ignored. Two carrier frequencies are assumed

as f1 = 26 GHz and f2 = f1 + 1 MHz, respectively. With the accuracy in the table,

all the terms are much less than 1 µm, which is the expected range noise level.

Therefore, this TOF correction can be ignored for most error analyses. It can be

computed during the pre-processing with a sufficient accuracy. The most

dominant term is the first one that has an order of 10-1 µm level. Therefore, the

range correction accuracy mostly depends on the range-rate accuracy.

The correction (4.39) is a function of the carrier frequencies f1 and f2, and

two values need to be computed for the two frequency bands, K or Ka. Since

these corrections are an addition to the dual one-way ranges, the same ionosphere

correction algorithm as the range combination can be used for computing the

correction corresponding to the ionosphere-free instantaneous range:
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ρ ρ ρ
TOF

TOF K TOF Ka
f f

f f
K Ka

K Ka

= −
−

( ) ( )2 2

2 2

  
(4.43)

where fK  and fKa  are the effective frequencies as defined in (2.19).

Figure 4.11 shows the TOF corrections for the two range signals, one with

true states and the other with nominal states. Although the signal itself has a large

magnitude, the difference between two corrections is very small as presented in

Figure 4.12. A numerical simulation was performed with the correction error

applied range-rate measurements, and the degradation of the gravity coefficients

due to the correction error was negligible. The instantaneous range correction

should be implemented in the pre-processing, but the correction error can be

ignored for most of the simulations.
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Figure 4.11 Time series of the instantaneous range corrections
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4.6 MULTIPATH NOISE

The straight line between two satellites' phase center is defined as the line-

of-sight (LOS). If the LOS is perfectly aligned with the K-band boresight (KBB)

or the x-spacecraft-body-fixed-axis (SCA), the carrier phase measurement gives

true distance. In the real situation, the nominal LOS that is predicted by on-board

attitude controller to control the satellite attitude is not exactly same as the true

LOS. Even the attitude error exists in keeping the satellite in the nominal attitude,

where the KBB is parallel to the nominal LOS. When the KBB is not parallel to

the true LOS, indirect signals are reflected near the phase center and the carrier

phase measurements are affected. Because of the arbitrarily different geometric

situation, there is no general model of multipath effect. However, with some

approximation made by Thomas [18], it is possible to derive a simple relationship

between the attitude variation and pessimistic multipath noise. The original

purpose of this analysis was to determine the attitude deadband, and it is why the

simple relationship was implemented. One of the attitude simulation results from

AMA [24] was used to get attitude variation time series and to realize the

multipath noise. Numerical simulations were performed to analyze the effect of

multipath noise on gravity solution,.
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4.6.1 Multipath Formulations

The effect of multipath on carrier phase may be estimated by the following

consideration. The carrier phase observable consists of a direct signal and an

indirect signal that is reflected near the antenna phase center [42]:

direct: Aeiφ (4.44)

indirect: ε φ φ Aei( )+ ∆ (4.45)

where

φ = phase

A = amplitude

∆φ = phase shift by multipath

ε  = amplitude reduction factor

The amplitude of the indirect signal is reduced by the reduction factor ε  because

of the reflection of a surface.  The phase of the indirect signal is delayed by the

phase shift ∆φ , which is a function of geometric configuration.  The

superposition of two signals in (4.44) and (4.45) becomes

Aeiφ + ε φ φ Aei +( )∆ (4.46)

It can be represented as a composite signal of the following form

composite: ε φ φ
M

iAe M +( )∆ (4.47)
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In the imaginary domain, it is easier to represent the relationship between the

direct and composite signals. Figure 4.13 shows that the composite signal is the

vector sum of the direct and indirect signals.

φ
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εAεΜA
∆φ

∆φ Μ

Im

Re

indirect

direct

com posite

Figure 4.13 Phase diagram of direct, indirect, and composite signals

Using this graphic representation, one can find the composite phase shift and

amplitude reduction factor as a function of indirect signal reduction factor and

phase shift:

tan
sin

cos
∆ ∆

∆
φ ε φ

ε φM =
+1

(4.48)

ε ε ε φM = + +1 22 cos ∆ (4.49)

The maximum phase shift occurs when the composite signal phase is

perpendicular to the indirect signal phase, and the maximum value ∆φM  may be

obtained by the following relationship
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sin ∆φ εM = (4.50)

The minimum phase shift occurs when the composite signal phase is parallel to

the indirect signal phase. The minimum value becomes zero:

∆φM = 0 (4.51)

This minimum condition yields the maximum or the minimum value of the

composite reduction factor as

ε εM = ±1 (4.52)

The GRACE multipath error can be related to the cone angle, which is

defined as the angle between the LOS and x-spacecraft-body-fixed-axis (SCA) or

the tilt angle of the satellite front. Figure 4.14 shows the cone angle θ and the

reflection distance y, which is the distance between the phase center and the

reflection point [18].

θ

phase center

y

incoming phase 
wave

Figure 4.14 Definition of cone angle and multipath reflection point
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The indirect signal phase shift may be related to the cone angle as follows

∆φ π
λ

θ
λ

= −



2

y y
(4.53)

λ  is the wavelength of carrier phase signal (K or Ka band)

In case of the GRACE mission, the multipath interference can not be

avoided since the line-of-sight is not perfectly known during flight, where the on-

board controller uses a predicted value. However, the angle between the LOS and

the x-SCA or the K-band boresight (KBB) can be determined accurately by post

processing. In addition, the SST observable is not a true range but a biased-range,

so it is not an important factor. Of interest is the variability of indirect signal

phase shift, which is directly related to attitude variation. The variability of

composite signal phase-shift depends on the mean part of attitude variation. The

worst case happens when the amplitude reduction factor has a value near its

maximum or minimum. Let us assume that the distance y meets the following

condition [18]:

e i y2 1π λ/( ) = ±  or 2π
λ

πy
N



 =  (4.54)

For small indirect signal phase-shift ∆φ , (4.48) becomes

∆ ∆φ ε φ
εM ≈

+1
(4.55)
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For small amplitude reduction factor ε , the composite phase shift may be given

by

∆ ∆φ ε φM ≈   = ⋅ 



ε π θ

λ
2

y

         = 



ε π

λ
θ2

y (4.56)

Then, the range error due to multipath becomes

∆ ∆R yM= =λ
π

φ ε θ
2

(4.57)

The above error is for one satellite and actual multipath interference occurs at two

satellites independently. The dual one-way range error is obtained by multiplying

the one way error by 2  as

∆ρ ε θ= 2 y (4.58)

The range-rate error is obtained by differentiation of that range error:

∆ ˙ ˙ρ ε θ= 2 y (4.59)

4.6.2 Multipath Noise Realization

Since the attitude variation directly affects the multipath, it is important to

control the attitude variation to within a specific level to minimize this error. The

GRACE team at LaRC/AMA performed some preliminary attitude simulations
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and one of the simulation results is presented here. These attitude variation

characteristics are expected to change, but are useful for a tool for sensitivity

study. Exact condition is difficult to simulate realistically because disturbance

environment is unpredictable.

The moment of inertia of the satellite was assumed as (75, 364, 421)

kg/m2. The satellite uses a magnetic torquer and thrusters to control the attitude

but the magnetic torquer is in charge of most attitude maneuvers. The satellite

attitude is adjusted when the cone angle is greater than specified deadband limits.

The cone angle is computed from the yaw and pitch angle, and independent of the

roll angle. Due to this reason, the roll angle has a larger deadband than the yaw

and pitch angles.

Figure 4.15 shows the Euler angle variations. The yaw and pitch angles

have some bias due to the star tracker bias. The maximum yaw angle variation is

0.5 mrad, but the pitch angle variation is 0.2 mrad and is smaller than the yaw

angle. The maximum roll angle is 10 mrad. The cone angle variations are

presented in Figure 4.16. Due to the yaw and pitch angle biases, the cone angle

has a bias of 2mrad and this bias causes a range bias. Since the SST measurement

is a biased-range, the range bias does not affect the SST measurement accuracy.

Of interest is not the bias but the variation of the range error. This bias is removed

for the range-rate measurement. The maximum cone angle variation is 0.5 mrad.
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Figure 4.16 Cone angle variation

The simplified relationship between the multipath noise and the cone

angle variation was derived in (4.58) and (4.59). To obtain the range/range-rate

noise, one needs three quantities, the amplitude reduction factor ε , the distance

between the reflection point and the phase center y, and the cone angle error θ.

The cone angle variation comes from the attitude simulation results. To determine

the amplitude reduction factor ε , a full-scale mockup of the front of the satellite

in conjunction with one of the prototype horns was tested [66]. With the

correction for the effect of non-uniform illumination of the nearest edge of the

satellite front, the reduction factor was down by at least -56 dB. For the present

numerical simulations, a more pessimistic value of -50 dB was used instead. The

distance between the phase center and the reflection point is a random number

and dependent on the shape of the front of the satellite. With the GRACE

configuration B, the distance varies from 27.5 cm to 74 cm. Theoretically, circular

approximation of the front area yields the average distance from the phase center
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to edges of 42 cm. However, y = 70 cm was used as a pessimistic value. With

these values, the sensitivity of the multipath range error for the cone angle error

becomes 3 µm/mrad.
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Figure 4.17 Power spectral density of the range multipath noise

The range multipath noise was computed using (4.58) with 10s cone angle

data. Then, the range-rate noise was obtained by differentiation of the range noise

time series so that the power spectrum is amplified in the high frequency region.

Figure 4.17 shows the spectral density of the range noise. This noise spectrum has

a high power at the low frequency, but has a low power at the high frequency.

Comparing with the oscillator and system noise, this multipath noise is smaller

than the two noises at all the frequencies, lower than the oscillator noise at the low

frequency and lower than the system noise at the high frequency. Moreover, the

simulation assumes some pessimistic situations, i.e. maximum phase variability
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by the attitude motion, larger offset value y, and larger reduction factor ε.

Therefore, one can expect that the effect of the multipath noise is not significant.

This is validated by the gravity estimation simulation results, which shows no

significant degradation when comparing with the other error sources.

4.7 PHASE MEASUREMENT SIMULATION

The SST range errors described in the previous sections are applied to the

instantaneous range instead of the phase measurements. Their effect on the phase

measurement is converted to the effect on the range measurement by using the

spectral analysis of the dual one-way ranging system. In order to validate the SST

error models, especially the oscillator noise, a set of the SST phase measurements

were generated by using the algorithm developed by Key [36]. Using these phase

measurements, the dual one-way range was obtained. The instantaneous

correction algorithm was applied to convert the dual one-way range into the

instantaneous range. This instantaneous range was compared with true

instantaneous range that was computed by true satellite states. The difference

between these two ranges represents the inter-satellite range error.

Two sets of phase measurements were generated for the K and Ka bands.

For each band, two phase measurements were generated for the two satellites.

Therefore, four phase measurements were generated for a nominal observation

time. Each of the phase measurements contains the reference and received phases,
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and the latter represents the phases before the time-of-flight of the phase signals.

An iteration method was applied to compute the time-of-flights, which include the

geometric range, ionosphere phase advance, and antenna offset [36]. The transmit

time becomes the receive time minus the time-of-flight. On each transmit time,

the received phase, sum of nominal phase and phase error, was computed. On the

receive time the reference phases were generated. The phase measurements were

computed by subtracting the received phase from the reference phase and by

adding the system noise.

The two phase measurements of each band were added to form a dual one-

way phase measurement. And then, the dual one-way range for each band was

obtained. These two ranges were combined by using (2.20) to form an

ionosphere-free biased-range. The instantaneous range correction of (4.39) was

computed using nominal satellite states; accuracy of 50 cm position and 5 cm/s

velocity. Then, this observed instantaneous range was compared with the true

instantaneous range that was computed from the true states. This difference

represents the inter-satellite range measurement error due to the oscillator and

system noise.
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Figure 4.18 Time series of GRACE phase measurements

Figure 4.18 shows the time series of the four phase measurements for the

two satellite and two frequency bands. The unit is a cycle. Due to the difference

between the reference and the received frequencies, one measurement increases

linearly but the other decreases linearly. In case of the actual mission, a phase

locked loop will be reset periodically to avoid the overflow of the phase

measurements after a long period [23].
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Figure 4.19 Dual one-way phase measurements for K and Ka bands

Figure 4.19 shows the dual one-way phases for the K and Ka bands. They

are just the sum of the SST1 and SST2 phase measurements and show strong 1-

cpr signals. The difference between the two measurements represents the different

phase shifts due to the ionosphere effect. No phase ambiguities were applied to

these measurements.

-2000

-1000

0

1000

2000

3000

0 20000 40000 60000 80000

SAT1

SAT2

P
ha

se
 E

rr
or

 (
C

yc
le

 @
26

G
H

z)

time(sec)

Figure 4.20 Phase error time series of two K band signals
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Figure 4.20 shows the phase errors of the two USOs. Both errors are

scaled to the carrier frequency (K band) phase errors.  Phase errors for the Ka

band have the same patterns but the scales are different. Two cases were

performed, one with the oscillator noise only and the other with both the oscillator

and system noises. Figure 4.20 (and following plots) are the results of the first

case. The second case was also compared with the range simulation model and it

shows good agreement with the range model.
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Figure 4.21 Time series of the time tag errors for two time tag cases

– GRACE USO time tag and GPS clock solution

Figure 4.21 shows the time-tag errors used in this simulation. As

mentioned in Section 4.2.2, the two time-tag approaches were used. The first one

is the use of the time-tag assigned by the GRACE onboard USO (called USO

time-tag). The second one is the use of the time tag corrections from the GPS

clock solution (called GPS time-tag). For the first approach, the time-tag error is

related to the phase error by the equation (4.14). For the second approach, 10ns
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bias and 30ps white noise variations were applied to the time-tag errors of the

SST1.  For the SST2, 5ns bias with 30ps variation was applied. The USO time-tag

case shows much larger errors.
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Figure 4.22 Time series of the range error due to the oscillator

noise for two time-tag cases

Figure 4.22 shows the time-series of the range errors. The USO time-tag

case show much larger variation. In Figure 4.23, the spectrum of these two errors

are compared with the spectrum of the range error described in Section 4.2.3,

which is comparable to the USO time-tag case.
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Figure 4.23 Power spectrum of the range error due to the

oscillator noise

The phase simulation results very well agree to the range simulation results, and it

validates the simulation models used in this study. The GPS time-tag case has a

higher error level at the high frequency than the USO time-tag case. However,

after the system noise is applied (1µm/√Hz), this difference becomes

insignificant.

This phase simulation validates the simulation models on the range error.

Therefore, the use of the range error model is sufficient to simulate the noise

characteristics of the dual one-way ranging system. By using the range error

model, the simulation procedure can be simplified and more effort can be directed

to implement the other error sources.
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4.8 COMPARISON OF THE SST ERROR SOURCES

The power spectrum of the SST observation error due to the oscillator,

system, and multipath error sources are compared. The accelerometer random

noise, which is the most dominant accelerometer noise, is also included for

comparison. Details on the accelerometer random noise are described in the

following chapter. The SST error sources are modeled as the phase or range error

and then differentiated for obtaining range-rate and range-acceleration errors.

However, the accelerometer noise is modeled as the satellite acceleration and is

not able to map into the inter-satellite range and range-rate directly. An analytic

transfer function was derived in Appendix A in order to convert a perturbed

acceleration into an equivalent range or range-rate perturbation. The transfer

function described in Figure A.3 was used to predict the range or range-rate error

spectrum due to the accelerometer error. The range-acceleration error is

comparable to the acceleration error if the out-of-plane term (second term of

(2.26)) is ignored.

Figure 4.24 compares the SST measurement error sources for the range,

range-rate, and range-acceleration observables. All the three SST noises are

smaller than the accelerometer noise at the low frequency (< 2mHz ≈ 10 cpr).

Despite of its strong long wavelength signal, the oscillator noise is still smaller

than the accelerometer noise. One can expect that the accuracy of the low degree

gravity coefficients is mainly affected by the accelerometer noise. At the high

frequency, the SST system noise is dominant. As the size of the estimated gravity

increases, the SST noise effect becomes more significant.
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Figure 4.24 Comparison of the SST measurement error sources for the

range, range-rate, and range-acceleration observables
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To compare the effect of individual SST measurement noise component

on the gravity recovery, each error source was applied separately without any

other noises. Three error sources, oscillator drift, system, and multipath noises

were applied, and a (50×50) gravity field was estimated by using 7 day

measurements.

Table 4.4 shows the range-rate residual RMS and the cumulative geoid

error due to each error source. The pre-fit RMS values are the original noise

levels. The post-fit RMS values are computed by removing low-low biases from

the residual, Since the low-low bias and bias-rate remove very low frequency

signal, i.e. below 1 cpr, the RMS value represents the power of the high frequency

signal. The details on the low-low bias parameterizations are described in Chapter

3. The oscillator drift noise shows a significant difference between the pre-fit and

post-fit RMS values since its strong low frequency signal is effectively removed

by the low-low biases. The system noise has a higher value than the oscillator

Table 4.4 Comparison of range-rate error sources

Noise Type Pre-fit RMS Post-fit RMS Cumulative
Geoid Error

Oscillator 0.031 µm/s 0.018 µm/s 0.011 cm

System 0.045 µm/s 0.045 µm/s 0.010 cm

Multipath 0.009 µm/s 0.008 µm/s 0.015 cm
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noise because of its dominant high frequency characteristics, i.e. the system noise

increases linearly as frequency increases. Since the low-low bias adjustments

were applied for the low frequency only, the high frequency noise level was not

reduced and it yields the higher RMS.

The cumulative geoid errors, which are the sum of degree difference

variances multiplied by the Earth radius, were computed up to degree 50. The

multipath noise has the highest error. It is mainly because of its higher range-rate

error level around the 20-cpr (3×10-3Hz) frequency as shown in Figure 4.24.

Therefore, the effect of the multipath noise would be significant only for a small

size of gravity estimation and can be negligible for larger gravity estimation. The

oscillator and system noises yielded the same level of errors. These results are not

consistent with the post-fit RMS levels, where the system noise has the higher

value. This is due to the fact that the high frequency part of the system noise,

which did not affect the (50×50) gravity solution significantly, was counted in

computing the RMS value. The system noise would be dominant as the degree

and order of the estimated gravity field increases.
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5 ACCELEROMETER MEASUREMENT ERRORS

5.1 INTRODUCTION

The GRACE satellites will use three-axis accelerometers, located at the

mass center of each satellite, to eliminate the effects of the non-gravitational

forces. Each instrument is a servo controlled electrostatic accelerometer, which

measures the electrostatic force necessary to maintain the accelerometer proof-

mass motionless with respect to the sensor cage. The proof-mass motion comes

from the fact that the gravitational forces affect both the cage and the proof-mass,

but the non-gravitational forces, e.g. drag, affect the cage only. The GRACE

satellites will use the SuperSTAR accelerometer developed by the French space

agency CNES [19]. It is a modified version of the previously flown ASTRE high

precision accelerometer and shown in Figure 5.1 [17].

The accelerometer measurements will not contain just the surface force

effects since they contain various other error sources, e.g. scale factor, bias,

misalignment, attitude and so on. Therefore, it is necessary to analyze how these

error sources will degrade the accelerometer measurements and the estimation of

the orbit and gravity solutions. The following sections depict the generation and

processing of the simulated accelerometer measurements. The numerical

simulation results with independent error sources are compared as well.



148

Figure 5.1 Illustration of the SuperSTAR accelerometer [17]

5.2 SIMULATION PROCEDURE

5.2.1 Measurement Models

The accelerometer measurement is the sum of the non-gravitational

accelerations, including atmospheric drag, solar radiation pressure, earth radiation

pressure, and so on. However, it is corrupted by unknown scale factors, biases,

random noise, and so on. The measurement model may be given by

f f b Sobs accM= + + (5.1)

where

f obs = accelerometer output

f acc = true non-gravitational acceleration expressed in
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   the accelerometer coordinates

M = scale factor matrix

= 

M M M

M M M

M M M

11 12 13

21 22 23

31 32 33

















b = bias vector

= b b b
T

1 2 3[ ]
S = random noise vector

The scale factor matrix M multiplies the true acceleration f obs . Ideally, M should

be an identity matrix, but it has non-unit diagonal elements with non-zero off-

diagonal terms due to the influence of acceleration along any one axis on the

output for other axis. The diagonal elements change the magnitude of the true

acceleration components, and the off-diagonal elements reflect cross-talk among

three axis, which come from non-orthogonality of the alignment of the three axes.

In this study, the cross-talk terms were ignored, so that the scale factor matrix

could be assumed to have diagonal elements only. The bias term b has constant

values and it is distinguished from the random noise, which has a frequency

dependent characteristic. Also there may be higher order terms of f, but those

terms were ignored in this study since the simulation results with the quadratic

term did not show significant degradation of the gravity solution [58]. It should be

noted that the important thing is not the size of these scale factors and biases, but

the accuracy of their estimates.
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The accelerations f obs  and f accare expressed in the accelerometer

coordinates, not in the inertial coordinates which are used for orbit processing.

Therefore, some coordinate transforms are necessary to process the accelerometer

outputs, and it causes another type of error. For this error aspect, it is essential to

define the coordinate system properly. The following coordinate systems,

illustrated in Figure 5.2, are defined for the GRACE satellite system [19].

Figure 5.2 GRACE satellite coordinate systems [19]

x y zS S S, ,  ( )  are the satellite coordinates defining location and coordinates of

satellite hardware, and x y zacc acc acc, ,  ( ) are the accelerometer coordinates centered

at the target center-of-mass (CM). x y zSF SF SF, ,  ( )  are the ideal satellite frame
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centered at the accelerometer proof-mass and used for the primary satellite frame

in this study. Depending on whether the GRACE satellite is the leading one

(SST1) or the trailing one (SST2), the direction of the orbital reference

coordinates is changed. The transverse direction becomes - xSF  for the leading

satellite and + xSF  for the trailing satellite. Another important thing is the

definition of the accelerometer axes. Due to ground test limitations, one of the

accelerometer axes has less accuracy than two other axes. That axis is referred to

as the less sensitive axis and labeled xacc . After some numerical simulations, ySF

or the out-of-plane (or normal) direction was chosen for the less sensitive axis.

The details on those simulations are described in Section 5.4.1.

Due to the misalignment in installing the accelerometer in the spacecraft,

the accelerometer coordinates x y zacc acc acc, ,  ( ) do not coincide with the spacecraft

coordinates x y zSF SF SF, ,  ( )  perfectly. The accelerometer error due to this

misalignment is called misalignment error.

Another type of measurement error, called attitude measurement error,

results from the uncertainty between the satellite coordinates and the inertial

coordinates. It is noted that this is related not to the attitude control error but to

the accuracy of attitude determination. Two star cameras determine the rotation

matrix between these two coordinates, but those measurements contain some

errors. These errors corrupt the transformation matrix between the spacecraft

coordinates x y zSF SF SF, ,  ( )  and the inertial coordinates (e.g. J2000).
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5.2.2 Accelerometer Measurement Generation

Two kinds of measurements were generated with the truth models, one

was the accelerometer measurement and the other was the rotation matrix from

the inertial coordinates to the satellite coordinates. This section describes how the

measurement errors are applied to those simulated measurements.

The satellites' trajectories were integrated using the truth models for the

gravitational and non-gravitational forces. The non-gravitational accelerations

were computed along the true trajectory, which are expressed in the inertial

coordinates (J2000 frame). Then those inertial accelerations were transformed

into the accelerations expressed in the satellite coordinates, also called the SF

accelerations:

f fSF
I S
true IR= → (5.2)

where f I  and f SF  are the accelerations expressed in the inertial and satellite

coordinates, respectively. The subscript I represents the inertial coordinate system

and S does the satellite coordinate system. The true transformation matrix

(without attitude measurement errors) was used for this transformation.

Transforming these SF accelerations into the ACC accelerations that are

expressed in the accelerometer coordinates was affected by the misalignment

error. Since the rotation angles were assumed small, the transformation was

realized by multiplying the SF accelerations by a small angle rotation matrix

RS A
err
→  [25]:
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f f facc
S A
err SF SFR= =

−
−

−

















→

1

1

1

3 2

3 1

2 1

ε ε
ε ε

ε ε
(5.3)

where ε ε ε1 2 3, .( )  represent the small angular rotation vector components. This

transform is independent of the order of rotation. The misalignment error is

caused by this rotation matrix error. The uncertainty of this misalignment may be

as much as 0.3 mrad. Since the accelerometer error from this transformation error

is the multiplication of the accelerometer input and the rotation matrix, its

magnitude is proportional to that of the accelerometer input, i.e. non-gravitational

acceleration.

After being transformed from the SF accelerations, the ACC accelerations

were multiplied by the scale factor matrix and then the biases and the random

noise were added:

Accelerometer Obs.: f f b Sobs
S A
err

I S
true IM R R= ( ) + +→ → (5.4)

This quantity was used as the accelerometer output and was assumed to be

comparable to the measurements made during the actual mission.

The attitude measurement error is associated with the rotation matrices

from the inertial coordinates to the satellite coordinates, which are measured by

the star cameras. The requirements for the star camera are the 1σ value of 30 µrad

for the single axis accuracy at orbital rate, relative to the star camera line-of-sight

(LOS) and 240 µrad for the LOS axis [19]. The maximum update rate is 2 Hz.

These errors may be assumed as the white noise. Since the star camera axes are
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tilted 45° from the satellite −zSF  axis in the y zSF SF−  plane, a transformation is

required to convert the uncertainty level of the attitude measurements in the star

camera coordinates into the uncertainty in the satellite coordinates [21]. The

satellite axes rSF SF SF SFx y z= ( ), ,  may be converted into the i-th star camera axes

rSCF SCF SCF SCFi i i i
x y z= ( ), ,  using the transformation matrix RS C→ :

r rSCF S C SFi
R= → (5.5)

where

RS C→ =
−

















1 0 0

0

0

cos sin

sin cos

θ θ
θ θ

θ =
+
−









180 45

180 45

o o

o o

 for i = 1

 for i = 2

The ySCFi
 represents the star camera LOS axis component. The covariance along

the star camera axes, PSCFi
, can be transformed into the covariance along the

satellite axes, PSF , as follows

 P   PT
SF S C SCF S CR R

i
= → → (5.6)

The actual variance is the sum of two variances from the 1st and 2nd star cameras.

The standard deviations of these errors are 0.2 mrad, 0.04 mrad, and 0.2 mrad

along the radial, transverse, and normal axes, respectively. Because of its high

sampling rate of 2Hz (0.5s), the standard deviations for the 0.1Hz (10s) sampling

rate have the lower values of 0.05 mrad, 0.009 mrad, and 0.05 mrad. As for the
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misalignment error, the small angle rotation matrix was used to apply this

transformation error to the rotation matrix RI S→ :

Attitude Obs.: R R R RI S
obs

I S
err

I S
true

I S
true

→ → → →= =
−

−
−

















1

1

1

3 2

3 1

2 1

ε ε
ε ε

ε ε
(5.7)

The flow chart of the generation procedure is presented in Figure 5.3. This

procedure describes how the two simulated measurements of (5.4) and (5.7) are

generated.
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→
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  S = Satellite Body-Fixed
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Figure 5.3 Generation procedure of the simulated accelerometer

observations
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5.2.3 Accelerometer Measurement Processing

When computing the nominal trajectory, the accelerometer measurements

are used for the non-gravitational acceleration information in place of the nominal

non-gravitational models, which include the atmospheric drag model, radiation

pressure models, and so on. However, these measurements contain the errors as

described in the previous section. Among those error sources, the scale factors

and biases vary slowly enough to be estimated during the data processing activity.

The nominal accelerometer observation f acc  is obtained from the noisy

observation  f obs , which is the simulated or real accelerometer measurement, by

using the nominal scale factors and biases:

f f bacc
c

obs
c cM M= −− −1 1 (5.8)

where Mc  and bc  are the nominal scale factors and biases, respectively, and

should be distinguished from the true scale factors and biases in (5.1). This

nominal accelerometer observation f acc  is the acceleration expressed in the

accelerometer coordinates, and it must be transformed to the inertial acceleration

f I  for numerical integration:

f fI
S I
obs accR= → (5.9)

Since the misalignment between the accelerometer and satellite coordinates is

unknown, the accelerometer coordinates are assumed to be coincident with the

satellite coordinates. The inverse of the star camera observation RI S
obs
→  of (5.7) is

used for the transformation. Substitution of (5.8) into (5.9) relates the noisy
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observation  f obs  to the nominal inertial acceleration f I  that is used to compute

the nominal trajectory as follows

f f bI
S I
obs obsR M= +( )→

˜ ˜ (5.10)

where

f I = nominal non-gravitational acceleration expressed

   in the inertial coordinates

f obs = accelerometer measurement  vector

M̃ = inverse scale factor matrix
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The actual estimated parameters were the inverse scale factors M̃  and the inverse

biases b̃  instead of the scale factors M  and biases b  in (5.1). It makes the

estimates, e.g. inverse scale factors and biases, be linear with respect to the

observation f obs . These inverse scale factors and biases are updated through the

numerical iterations to be close to the true values. The flow chart of this

estimation procedure is presented in Figure 5.4.

The accelerometer measurements were related to the inverse scale factors

and the inverse biases by the partial derivatives of the accelerations with respect

to the dynamic parameters as

∂
∂

f I

ii

i

i

i S I

obs

i
obs

M

R

R

R

f
˜

=
















→

1

2

3

 (5.11)
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where

R

R

R

i

i

i S I

obs

1

2

3

















→

= i-th column vector of the rotation matrix RS I
obs
→

fi
obs     = i-th element of the accelerometer output vector f obs

Since neither the GPS measurement equations nor the SST range/range-

rate measurement equations contain the acceleration terms explicitly, the
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accelerometer parameters are treated as the dynamic parameters, rather than the

kinematic parameters [8,58]. The difference between the two parameter types is

described in Chapter 2. The H̃  matrix elements, which correspond to the

accelerometer estimation parameters, have zero values:

∂
∂

∂
∂

Obs

M

Obs

bii i
˜ ˜

= = 0 Obs
GPS D

SST
= 




 D

 range / range - rate
(5.13)

However, the corresponding H matrix elements have non-zero values since those

estimation parameters are mapped by the non-zero state-transition matrix as is the

characteristics of the dynamic parameters.

At initiation of the orbit adjustment process, the nominal values for the

inverse scale factors and biases were set to 1 and 0, respectively. Through

iterations, the nominal values were updated and converged to the truth values.
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Figure 5.4 Estimation procedure of the accelerometer scale factors

and biases
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5.3 SIMULATION RESULTS

To determine how each accelerometer error source affects the estimate of

the gravity field parameters as well as the scale factors and biases, each error

source was applied separately. Those included random noise, attitude

measurement error, and misalignment error.

Table 5.1 Simulation parameters of the accelerometer errors

Random Noise

(PSD1/2)

(1+0.005/f) 1/2×10-10 m/s2/Hz1/2 (R,T)

(1+0.1/f) 1/2×10-9 m/s2/Hz1/2 (N)

Attitude Meas. Error White Noise σ = 0.009 mrad(Roll)

σ = 0.05 mrad (Yaw, Pitch)

Misalignment Error Constant 0.3 mrad

Table 5.1 describes the accelerometer error sources used in this study.

Among the three accelerometer axes, the normal axis was selected for the less

sensitive axis, which has a higher noise level than other axes. Details are depicted

in Section 5.4.1. The attitude measurement error results from the uncertainty of

the spacecraft body-fixed coordinate estimation with respect to the inertial

coordinates. These errors are mainly determined by the star camera with the

standard deviation of σ = 0.05 mrad for yaw and pitch motion and σ = 0.009

mrad for roll motion. Equation (5.7) represents this error, and the white noise

variation was assumed for each infinitesimal angle error ε ε ε1 2 3, .( ) . The
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alignment error represents the uncertainty in the alignment of the spacecraft axes

and the accelerometer axes. The values of 0.3 mrad were applied for ε ε ε1 2 3, .( )  in

(5.3), and remained as constants through all data spans. The expected time

variability, which may be less than 0.1 mrad, was not applied in this study.

Both the attitude and misalignment errors affect the accelerometer

measurement through interference from the other axis components. Therefore,

their magnitudes are dependent on the magnitude of the accelerometer

measurements, e.g. the non-gravitational accelerations. These errors grow as the

non-gravitational accelerations are increased. In other words, these errors are

more significant for lower altitude orbits where larger atmospheric drag is present.

Figures 5.5 and 5.6 represent the magnitude of the individual accelerometer errors

at the altitude of 300km and 450km, respectively. The misalignment error is

significant at the 300km, but is negligible at the 450km.
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Figure 5.5 Magnitude of individual accelerometer errors

at 300km altitude
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at 450km altitude
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In addition to the magnitude, these errors have the same frequency

characteristics as the drag acceleration, i.e. large 1 and 2 cpr (cycle-per-

revolution) signals. Figures 5.7 and 5.8 represent the power spectral density of the

individual accelerometer errors at the altitude of 300km and 450km, respectively.

In the case of the attitude measurement error, the angle errors were assumed to be

white noise rather than constants, and those strong tone signals were alleviated by

multiplication of the white noise. However, the misalignment error, which was

made by multiplication of the acceleration by constant values, retains a large 1

and 2 cpr signals. Its tone signals are greater than the random noise at the 300km

altitude. Unlike the 1-cpr noise, which can be effectively removed by applying

empirical parameters, the 2-cpr noise may degrade the estimation of the J2

coefficient significantly.
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Figure 5.7 Power spectral density of individual accelerometer

errors at 300km altitude

10-8

10-6

10-4

10-2

100

102

104

106

0.1 1 10 100

Non-Grav.
Random
Attitude
MisalignmentA

c
c

e
le

ra
ti

o
n

 
(n

m
/s

2 /H
z1/

2 )

Frequency(CPR)
Figure 5.8 Power spectral density of individual accelerometer

errors at 450km altitude



167

To maximize the accelerometer errors, a lower altitude of 300 km, was

used for the simulations in this section. The separation angle was 2° and a

(50×50) gravity field was estimated using a 7 day measurement interval. No other

errors except the accelerometer errors were applied. Initial scale factor and bias

were 1.0 and 0, respectively.

Another consideration is the effect of solar radiation pressure. With

atmospheric drag only, the non-gravitational acceleration is acting along the

transverse direction, and it causes a singularity problem in estimating the radial

and normal scale factors and biases. More important is the radial component since

the radial motion is coupled with the transverse motion that is a major part of the

SST signals. In addition, the normal acceleration can be enhanced by horizontal

wind. One of the ways to enhance the radial acceleration is to include the

radiation pressure models. It is significant to note that the solar radiation pressure

varies as a function of β′, which is the angle between the orbit plane and the

geocentric direction to the Sun [15]. To maximize the radial acceleration, the

initial orbit condition with β′ = 0° was used. The smaller radial acceleration case

with β′ = 63° was also tried, but the gravity solution was two times worse for this

case than for the β′ = 0° case. In case of the actual mission, β′ is changing as the

orbit plane is moving, and it can not be fixed or selected. Some data span periods

will have a lower β′ angle to yield an accurate scale factor and bias estimate.

However, some periods will have a higher β′ angle to yield less accurate

estimates. The scale factors and biases estimated during the lower β′ angle periods

can be used as the nominal values during the high β′ angle periods.
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Figure 5.9 Time series of position and velocity errors due to the

accelerometer noise
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To analyze the effect of the accelerometer error on orbit estimation, the

satellite orbit error due to individual accelerometer error sources are analyzed.

Only the time series and amplitude spectrum plots of the all accelerometer noise

case, e.g., random, attitude, and misalignment errors with initial scale factor and

bias offsets are presented. Figure 5.9 shows the time series of position and

velocity errors due to all the accelerometer error sources. The gravity error is not

included with the same truth gravity field as the nominal one. Dominant signals

are 1-cpr signals in all the cases. The RMS of the position errors are 0.3 mm, 1.1

mm, and 0.9 mm for the radial, transverse, and normal directions, respectively.

The transverse direction has the largest position error. In the case of the velocity

errors, the radial, transverse, and normal components are 1.1 µm/s, 0.4 µm/s, and

1.0 µm/s, respectively. Unlike the position error, the transverse velocity error is

relatively lower than the others are. There exists a similarity between the radial

position and the transverse velocity errors, or the transverse position and the

radial velocity errors. This similarity corresponds to the relationship between the

radial velocity and the transverse position in the second term of (A.1), which

describes Hill's equation. The normal direction behavior can be predicted by the

third equation. The phase of the normal position is shifted from the velocity

components by 90°.  The position and velocity error time series due to the

individual error components are also plotted and compared with a reference, e.g.

no errors and the all error results. However, it is hard to distinguish the difference

among those errors due to their strong 1-cpr components.
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Figure 5.10 Amplitude spectrum of position and velocity errors due to

the accelerometer noise



171

The amplitude power spectrum of the orbit error due to each

accelerometer error component is plotted and compared with each other. The

position and velocity error amplitudes for the all error case are shown in Figure

5.10. The radial and transverse components, both position and velocity, have

strong tone signals, i.e. N-cpr signals. These tone signals mainly result from the

misalignment error that has a similar frequency as the atmospheric drag. The

normal direction errors are higher than the others in high frequency region and

this corresponds to the fact that the accelerometer less-sensitive axis is aligned

with the normal direction.
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Figure 5.11 Degree difference variances due to various

accelerometer error sources

Figure 5.11  shows the degree difference variance for each accelerometer

error case. The reference solution was obtained without any noise. The attitude
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measurement error and the random noise cause a similar level of degradation.

Both errors have nearly uniform degradation over all frequency range. The

degradation due to the misalignment error is lower than for the other two error

sources except for degree 2. This is caused by the poor estimate of the J2

coefficient, which is related to the 2-cpr signal of the satellite motion. The

degradations related to the resonance coefficients are significant since the

misalignment error signal spectrum is similar to that of the resonance signals.

Details are discussed in Section 6.4.

Table 5.2 Scale factor estimation error

Radial Transverse Normal
No errors 0.00005 < 0.00001 0.00001
Random noise 0.00012 < 0.00001 < 0.00001
Attitude error 0.00055 < 0.00001 0.00004
Misalignment error 0.00640 < 0.00001 0.00007

Table 5.3 Bias estimation error (××××10-6)

Radial Transverse Normal
No errors 0.00018 < 0.00001 0.00008
Random noise 0.00112 0.00001 0.00016
Attitude error 0.00212 0.00001 0.00005
Misalignment error 0.02504 0.00002 0.00042

Tables 5.2 and 5.3 represent the estimation error of the scale factors and

biases due to each of that error source. In all the cases, the transverse component

estimation is better than the radial and normal ones. The reason is that the

dominant non-gravitational acceleration is due to the drag that is acted along the

transverse direction. In other words, the transverse direction has more information

for estimating the scale factor and bias. For both scale factor and bias estimations,
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the misalignment error caused the largest degradation, followed by the attitude

measurement error.

As mentioned before, the magnitude of the misalignment error, which is

the effect of the off-diagonal components, is proportional to the magnitude of the

non-gravitational acceleration, particularly the atmospheric drag. To examine the

effect of the non-gravitational accelerations on the misalignment error, another set

of the simulations with higher altitude, h = 450 km, were also performed, but no

significant J2 degradation was shown for the misalignment error. This is due to

the lower atmospheric drag at the higher altitude, which results in a lower

misalignment error. Since the attitude measurement error is also related to the

coordinate transform and is proportional to the non-gravitational acceleration, a

higher altitude reduces the attitude measurement error as well. Therefore,

estimating the scale factors and biases accurately at the higher altitude during

initial period may reduce the effect of the misalignment and attitude measurement

errors at the lower altitude. The estimates at the higher altitude may be useful as a

priori values at the lower altitude unless those values are changed significantly

during the mission.

5.4 OTHER ACCELEROMETER ERROR SOURCES

5.4.1 Alignment of the Less Sensitive Axis

The accelerometer requires some pre-launch calibrations to measure its

scale factors and biases. It involves a free-fall experiment of the accelerometer
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under 1-g inside a drop-tower. Due to the 1-g acceleration, which is significantly

higher than space environment acceleration, one of three axes needs a higher

electrostatic force to keep the proof-mass motionless inside the cage. The

measurement accuracy of this accelerometer axis, which corresponds to the thin

dimension of the proof mass, is substantially lower than that of the other two axes.

The noise power spectral density (PSD) of the sensitive and the less sensitive axes

are presented with mathematical equations in Figure 5.12.
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Figure 5.12 Power spectral density of the accelerometer random
noises

This raised a question for the satellite design of which satellite body-fixed

direction would be aligned with the less sensitive axis. Among the three

directions, i.e. radial, transverse, and normal, the transverse direction needs the

highest accuracy since it is almost parallel to the line-of-sight (LOS) for the SST

measurements of the range and range-rate. Therefore, only two choices, radial and
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normal direction, are available for the less sensitive axis. In view of the satellite

design, configuring the less sensitive axis along the radial direction is preferred to

maintain the symmetry of satellite. However, radial and transverse motions are

coupled, so that radial acceleration error propagates to transverse position and

velocity errors and this would degrade the SST measurement accuracy. On the

other hand, the normal motion is uncoupled with radial and transverse motions in

the linear region. Therefore, it is better to align the less sensitive axis along the

normal direction. However, this decision breaks the symmetry of the satellite in

the cross-track direction and makes it hard to maintain the proof-mass at the

center of gravity of the satellite.

To quantify the effect of the less sensitive axis orientation on gravity

recovery, some numerical simulations were performed. Two alignment options,

the less sensitive axis along the normal or radial directions, were considered. In

addition to the ordinary tandem formation, the echelon formation, which is

described in Chapter 6, was considered. In the case of the tandem formation, the

SST observations come from the in-plane motions, so that the dependency on

radial orbit accuracy is high. In the case of the echelon formation, the SST

observations also depend on the out-of-plane (normal) motion, so that the

dependency on radial orbit accuracy is alleviated. In addition, the case of the no

reduced sensitivity axis was performed for the reference case.

For the simulations, 10-day measurement data were processed. The initial

altitude was 451km and the along-track separation angle was 2 degree. The right

ascension separation of the echelon formation was 0.13 degree, which is

equivalent to the cross-track distance of 15km on the equator. To the GPS double
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difference measurements, 5mm white noise was applied. The SST oscillator and

system noises were applied to the range-rate measurements. The MSIS90

atmospheric drag model with HWM93 horizontal wind model was used for

generating simulated accelerometer measurements. The transverse and normal 1-

cpr empirical parameters and the constant tangential empirical parameter were

adjusted.
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Figure 5.13 Cumulative geoid error for different configurations of

the accelerometer less sensitive axis

The cumulative geoid errors up to degree 50 were computed from the

estimated gravity fields, which are shown in Figure 5.13. The less sensitive axis

along normal direction with the tandem formation gives the best accuracy. The

less sensitive radial axis with the tandem formation is an order of magnitude

worse than the less sensitive normal case. The reference case with no reduced

sensitivity axis shows the same accuracy as the less sensitive normal case. This
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proves that the out-of-plane motion (normal) is decoupled from in-plane motion

(radial and transverse) and the effect of the normal motion on the SST

measurements can be ignored.

The less sensitive normal case of the echelon formation is worse than that

of the tandem formation. It is because of SST observation's dependency on the

normal motions.  The echelon less sensitive radial case shows an improvement

upon the tandem less sensitive radial case, but it is still substantially worse than

the tandem less sensitive normal case. Based on these simulation results, the

normal direction was selected as the less sensitive axis.

5.4.2 Center of Mass Offset-Induced Error

Since satellite orbit is described by the motion of its center of mass (CM),

the accelerometer should be close enough to the center of mass to provide non-

gravitational acceleration to orbit integrator. Due to satellite fabrication and

assembly limitations and variation of satellite mass distribution, the accelerometer

may not be exactly at the center of mass of the satellite. The offset between the

center of mass of the satellite and the accelerometer makes the accelerometer

measurements different from the actual non-gravitational acceleration acting on

the center of mass. This accelerometer error depends on the CM offset size and

the attitude control method, but both of them have not been fully determined yet.

Due to this limitation, the error level from the following analysis might be
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premature. It is why this CM offset-induced error is separated from the other error

sources.

Center of Mass

Proof-Mass

O

rACCrCM

d

  ωωωω

Figure 5.14 Accelerometer proof-mass offset from the center of mass

The vector d in Figure 5.14 represents the offset of the accelerometer

proof-mass from the center of mass. The vectors rCM and rACC represent the

positions of the center of mass and the proof-mass, respectively. The equations of

motion of those two points are given by [8,51,54]

˙̇r r fCM CM NGU= ∇ ( ) + (5.14)

˙̇r r fACC ACC ACCU= ∇ ( ) + (5.15)

where fNG is the non-gravitational acceleration acting on the center of mass and

fACC is the electrostatic force acting on the proof-mass, which is equivalent to the
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accelerometer measurement. With the offset d, the accelerometer measurement is

not same as the true non-gravitational acceleration, and it is required to derive the

relationship between the two quantities. This measurement error comes from two

sources, one is from different motions of two points, and the other one is from

different gravity accelerations acting on two points. The motion of the proof-mass

may be related to that of the center of mass as follows

˙̇ ˙̇ ( ˙̇ ) ( ˙) ˙r r d d d dACC CM r r= + + × ×( ) + × + ×ωω ωω ωω ωω2 (5.16)

where ( ˙)d r  and ( ˙̇ )d r  are the time derivatives expressed in the satellite body fixed

coordinates, and ωω is the angular velocity of the satellite. The gravity acceleration

on the proof-mass can be approximated by a Taylor series expansion as

∇ ( ) ≈ ∇ ( ) + ∇ ∇ ( )[ ] ⋅U U UACC CM CMr r r d (5.17)

Substitution of (5.14) and (5.15) into (5.16) yields the equation of the

accelerometer measurement fACC  as a function of the true non-gravitational

acceleration , center of mass offset, and angular velocity:

f f d d d d dACC NG r r G= + + × ×( ) + × + × − ⋅( ˙̇ ) ( ˙) ˙ωω ωω ωω ωω2 (5.18)

The gravity gradient matrix G is given by
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where (x, y, z) denote the satellite-body-fixed coordinates. The difference

f fACC NG−  represents the measurement error due to the center of mass offset.

To analyze the effect of this CM offset-induced error on the gravity

estimation, several numerical simulations were performed by adding the error

f fACC NG−  of (5.18) to the simulated accelerometer measurements. The same

attitude data [24], which was used for the multipath error analysis in Chapter 4,

was used. As like the multipath simulation results, the following simulation

results are subject to change due to the preliminary status of the attitude

simulation data. Figure 5.15 represents the time series of angular rate and

accelerations in the three directions. The orbit altitude was 300km. The

acceleration plots have some spikes, which result from rapid attitude changes.

Two sets of three random numbers, all approximately near 0.1 mm, were

used for the three-dimensional offsets d of two satellites. It assumed the use of the

CM trim mechanism, which adjusts the CM position by means of a moving mass,

and the offset is relatively small. The time variation ḋ  was not considered in this

simulation.
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Figure 5.15 Angular rate and acceleration time series
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Figure 5.16 Transverse components of the accelerometer noise

 due to the CM offset (σσσσ(d) = 0.1 mm)

Figure 5.16 shows the total accelerometer noise due to the CM offset with

three independent components described in (5.18). All of them are transverse

direction components. The total acceleration error is mainly driven by the gravity

gradient term, which has a strong long wavelength signal. The ω̇ω × d  term has

some large magnitude of spikes, which caused the spikes in the total error. While

the gravity gradient term is less dependent on the attitude motion (angular rate

and acceleration), the other two terms (ωω ωω× ×( )d  and ω̇ω × d ) are heavily
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dependent of it. One of the purposes of this analysis is to understand how the

individual components affect the gravity estimation. Therefore, two types of

simulations were performed; one with the gravity gradient term only and the other

with the attitude terms only. The combined case was simulated as well.

(50×50) gravity fields was estimated from 7 day measurements. Most

other noise effects were applied, which include inter-satellite system, oscillator,

and multipath noises, accelerometer random, attitude, and misalignment errors.

Initial scale factor and bias offsets were 2% and 10-6, respectively, which would

be the uncertainties after ground testing of the accelerometer.
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Figure 5.17 Spectrum of the range-rate residual due to

the CM offset error

Figure 5.17 compares the range-rate residual due to the CM offset error

with a reference residual. The reference case has the same error sources except the

CM offset error. These residuals are pre-fit quantities, i.e. before applying the
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low-low empirical parameterizations. Only the gravity gradient case is presented.

The attitude case was analyzed as well, but it is hard to distinguish the difference

from the reference case. The combined case is almost identical to the gravity

gradient case. The tone signal (N-cpr) increase is significant. This kind of tone

signal is similar to the gravity signal, so that it may affect the gravity estimation.
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Figure 5.18 Degree difference variances due to the CM offset error

Figure 5.18 shows the degradation of the estimated gravity field due to the

CM offset error. The results of the gravity gradient and attitude cases are

presented. The combined case is not presented due to its similarity to the gravity

gradient case. For a sensitivity study, a smaller offset of 0.01mm was also applied

for the gravity gradient case. The result of the 0.1mm gravity gradient case is

substantially worse than that of the reference case. However, the attitude case is

almost identical to the reference case. The small difference from the reference

case is due to the slightly different measurement weightings. The rapid attitude
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motion (spikes) hardly affects the gravity solution. The degradation of the

0.01mm gravity gradient case is negligible as well.

The degradation is mainly caused by the gravity gradient error and the

degradation is proportional to the CM offset size. Therefore, it is necessary to

reduce the offset size or to improve its estimation accuracy. If the CM offset is

known with certain accuracy, its effect can be reduced during the post processing

on ground. The current estimate of the CM offset estimation accuracy is as much

as 0.03mm [81]. Since the gravity degradation is proportional to the CM offset

size, the gravity degradation can be negligible with the 0.03mm offset.





186

6 SENSITIVITY STUDIES

6.1 INTRODUCTION

The accuracy of gravity estimation is affected by various parameters. To

understand this, it is necessary to identify and to quantify the effect of each

parameter, which may include orbit selection, instrument noise level, and so on.

Most of the major design parameters, instrument noise levels and orbit selections,

should be determined with consideration of the performance that is the accuracy

of the gravity estimation in case of the GRACE mission. Since major instrument

noises, the SST and accelerometer measurement noises were covered in the

previous chapters, this chapter focuses on the orbit selection.

The orbit selection issues include inclination, altitude, and separation. The

effect of the orbit parameters was analyzed by numerical simulations and the

semi-analytic method. The difference from the previous studies [29,45,65] is the

consideration of the instrument noise level change due to the orbit parameters,

e.g. altitude and separation. This kind of comprehensive error modeling enables

more realistic sensitivity studies.

The comparison between the range and range-rate measurement is also

described. The issues in the optimal combination of the GPS and SST information

matrices is studied further. The orbit resonant characteristics are examined for

better understanding of its effect on the SST measurements.

The expected gravity recovery accuracy is presented with typical

simulation results. To the extent that the error sources assumed in these
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simulations represent the actual errors, the GRACE mission can achieve this

accuracy.

6.2 ORBIT SELECTION

6.2.1 Separation

Two GRACE satellites will be orbiting in the same plane within a nominal

separation distance. The separation distance affects the gravity solution as well as

other orbit maintenance activities, so that it is interesting to analyze the effect of

the separation distance on the gravity solution. In general, the gravity signal

strength increases as the separation increases since the SST measurements is the

difference between the two perturbations acting on the satellites. This increase in

signal was shown in [65]. However, the larger separation may cause several other

problems, including measurement noise increase and observability problem.

The SST measurement noise level grows as the separation increases. The

separation distance affects two types of the SST measurement noises as described

in Chapter 4, the system and oscillator noises. The range system noise that has the

power spectral density of (1 µm/√Hz)2 at 230 km increases linearly as the

separation increases. That value becomes (0.5 µm/√Hz)2 for 1° separation and (2

µm/√Hz)2 for 5° separation. The oscillator noise, which represents the oscillator

drift residual after the dual one-way ranging filtering, grows as the cancellation

effect of the oscillator noise decreases due to the increase of the microwave time-

of-flight.
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Figure 6.1 Variation of the range-rate oscillator and system noises

along the separation angles

Figure 6.1 shows the increase of the oscillator and system noise on the

range-rate measurement due to the increase of the separation angle. Because of its

linear variation, the system noise increases over the entire frequency range. On

the other hand, the oscillator noise is affected only in the high frequency region

since the low frequency signals are still effectively removed after dual one-way

ranging filtering. The system noise level is much lower than the oscillator noise

level at the low frequency, so that the system noise increase for the longer

separation may not affect the low frequency SST noise. Considering these two

major SST noise behaviors, one can expect that the separation change may not

affect the low frequency noise but the high frequency noise.

Another aspect is the change of the gravity perturbation signal on the SST

measurement. The high frequency part of the gravity spectrum tends to be
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attenuated as the separation increases [45]. This attenuation can be predicted by

the semi-analytic method described in Chapter 3. The equation relating the range-

rate error variance to the gravity error variance is given by

σ δ
θ

σ δρn
n

e

e

n

nT
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R

GM

r

R
2

2 1

21
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( ) =

− ( )

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( )
+

cos
˙ (6.1)

The inverse of 1 − ( )Pn cosθ  reflects the effect of the separation angle θ on the

gravity recovery. This is a weighting function, which determines how much the

SST noise is transformed into the gravity error. With same noise levels, the

degree variance is entirely dependent on this term theoretically.

10-1

100

101

102

103

104

0 50 100 150

1°
2°
5°

degree

1

1 − Pn (cos )θ

Figure 6.2 Inverse separation functions vs. degree

Figure 6.2 shows the variation of the inverse separation function for three

separations. Higher value means higher error in gravity solution for the same level

of noise. In the low degrees, the 5° function has a lower value than the others, so
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that the 5° provides a better gravity solution if the same level of measurement

noise is present. In the high degrees, the 5° function has the same level of

magnitude as the others. In other words, the advantage of large separation is

reduced for the higher degrees and the high degree accuracy might be dependent

of the noise level.

 Another issue is the observability problem for certain gravity coefficients.

When the separation distance is identical to the wavelength of a certain

gravitational signal, each satellite experiences the same phase of the gravity

perturbation due to this signal. Therefore, the SST measurement, which is the

differenced quantity, does not contain this gravity signal. In other words, the

gravity coefficients producing this signal are hard to observe. For θ° separation

with a polar orbit, integer multiple of 360°/θ zonal terms are not observable. The

geopotential degrees corresponding to some separation angles are presented in

Wagner's study [79]. The correlation between the unobservable coefficients and

other terms degrades the other terms as well; on the other hand, this correlation

mitigates the singularity of the unobservable coefficients.

The question is whether the increase of gravity signal with larger

separation surpasses the increase of the measurement noise. To analyze the effect

of the separation distance on the gravity recovery, three numerical simulations

were performed with different separations and noise models. Three separation

angles of 1°, 2°, and 5° with 450 km altitude correspond to the distance of 119

km, 238 km, and 596 km, respectively. Most of the other errors, accelerometer

noises and multipath noise, were the same for all three cases, but the inter-satellite

system and oscillator noise levels were different.
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Figure 6.3 Variation of degree difference variances due to

separation angle changes

Figure 6.3 shows the degree difference variance for different separation

angles. As predicted by the separation function, the error level grows as the

separation is decreased. This means that the decrease in the SST measurement

noise level for smaller separation does not significantly affect the results.

To analyze the effect of the separation on high degree coefficients, the

semi-analytic method was applied to predict gravity recovery error. The same

types of noise as used in the numerical simulations were applied to realize the

range-rate noise residual. To obtain enough sampling, 30-day measurements were

used.

The degree error variances, which were predicted by the semi-analytic

method, are presented in Figure 6.4. Unlike the low degree accuracy, the high

degree accuracy increases as the separation decreases. This is contrary to the

inverse separation function behavior in Figure 6.2, where all the three weighting
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functions have the same levels in the high degrees. It implies that this accuracy

difference is due to the increase of the SST noise for the longer separation.

In summary, a longer separation is better for the low degree gravity

recovery, but a shorter separation is better for the high degree gravity recovery.

For balancing the low and high degree performance, the 2° can be a good choice,

and this value was selected as the nominal separation angle.
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Figure 6.4 Error predictions by the semi-analytic method for

different separation angles
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6.2.2 Altitude

Due to the attenuation effect of the gravitational field with increasing

altitude, a lower altitude is preferred for gravity estimation in general. The

GRACE satellites’ altitude range may be from 500 km to 300 km, which is

substantially lower than other geodetic satellites. However, low altitude causes

other problems. The atmospheric drag grows with decreasing altitude, and it

accelerates the decay of the satellite altitude and reduces the lifetime. Another

problem is the increase of the accelerometer noise. Some types of accelerometer

errors depend on the magnitude of the accelerometer input, i.e. non-gravitational

acceleration, so that they are increased as the altitude is decreased. In addition to

the noise, the high atmospheric density environment of low altitude requires more

frequent attitude maneuver and may degrade the SST measurement performance.

Therefore, it is necessary to quantify the effect of altitude on gravity estimation.
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Figure 6.5 Predicted GRACE satellite altitude variation [20,24]

The predicted GRACE satellite altitude variation is shown in Figure 6.5.

This prediction was made with the MET atmospheric model [20,24]. The initial

altitude is 480km or 450km. In the nominal case, the satellite may stay above the

400 km during most of its mission lifetime, five years, but the worst case

scenarios predict a fast decrease of the altitude. Therefore, the altitude prediction

heavily depends on the atmospheric density modeling. Since the satellite design is

still changing and the prediction of the atmospheric density is becoming close to

the actual density, the altitude variation will be more accurately predicted later.
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Figure 6.6 Atmospheric drag accelerations at 300km and 450km

altitudes

The predicted atmospheric drag accelerations at 450km and 300km are

shown in Figure 6.6. The magnitude of the acceleration at the low altitude is

increased nearly ten times. These increased drag acceleration affects some

accelerometer noises and causes more frequent attitude maneuvers. Among the

accelerometer noise models described in Chapter 5, the noise due to the scale

factor and misalignment errors increases for a lower altitude. The former is
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proportional to the scale factor uncertainty and the non-gravitational acceleration,

and the latter is proportional to the accelerometer alignment offset and the non-

gravitational acceleration. At the lower altitude, the accelerometer scale factor

offset or uncertainty does not increase, but the scale factor error increases due to

higher non-gravitational (drag) acceleration. The misalignment error increases as

well for the lower altitude. At the lower altitude, more attitude maneuver is

necessary to maintain the satellite nominal attitude, and this yields higher satellite

angular rate and acceleration. The accelerometer CM offset-induced error,

coupling between the CM offset and the angular rate and acceleration, increases

for the lower altitude.
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Figure 6.7 Accelerometer noise increase for a lower altitude

The accelerometer noise levels for 300 km and 450 km are compared in

Figure 6.7. The accelerometer scale factor, bias, misalignment, random, and

attitude noises are included. As shown in the previous figure, the drag

acceleration at the 300 km is ten times larger than at the 450 km. However, due to
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the presence of other altitude independent errors, the noise at the 300km is three

times larger. This three times increase may be very significant for the gravity

estimation at the lower altitude.
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Figure 6.8 Inverse attenuation factors for different altitudes

The degree variance equation in Chapter 3, which is also mentioned in the

previous section as equation (6.1), is also useful to predict the attenuation effect.

The inverse attenuation factor, r Re

n
/( ) +2 1

, reflects the variation of the gravity

error due to altitude change. Figure 6.8 shows the inverse attenuation factor of

different altitudes as a function of degree. Under same level of noise, higher value

represents more degradation of gravity solution. The differences between altitudes

grow as degree increases, which reflect the advantage of lower altitude in

estimating high degree gravity fields.
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Since the attenuation factor difference is smaller in low degree regions, the

semi-analytic method was necessary to predict high degree errors. Up to degree

180 were predicted for the three altitudes, 300km, 360km, and 450km. Smaller

size (50×50) of numerical simulations were also performed to verify the

prediction results at the low degrees. The predictions and simulations had both the

accelerometer and SST noises. The former included random noise, scale factor

and bias offsets, attitude error, and misalignment error. The later included

oscillator, system, and multipath noises. All the three cases have the same 2°

separation angle, and the separation distances are slightly different. However, the

change of the SST noises due to the separation distance variation was ignored.
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different altitudes

Figure 6.9 shows the degree variance of the three different altitudes, which

were predicted by the semi-analytic method. In high degree region, the lower
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altitude improves the gravity estimation, but the improvement is not as much as

the prediction by the attenuation factor. It is because of the higher accelerometer

noise at the low altitude. In the low degree region, below degree 50, the 300km

case shows a worse accuracy than others do. To clarify the cause of this worse

accuracy of the 300 km case, another set of (50×50) numerical simulations were

performed without applying any accelerometer or SST noises. In this case, the

accuracy of all the altitude cases has the same accuracy below degree 50. In other

words, the GRACE SST measurement is less sensitive to the altitude change. It

shows that the worse accuracy of the 300km case at the low degree is due to its

higher accelerometer noise.

6.2.3 Ground Track

Another effect of the orbit altitude is the variation of the ground track

pattern, which is a function of various orbit parameters but is mainly a function of

the altitude. Uniform ground tracks are ideal for the gravity estimation since they

provide the best condition for detecting the gravity coefficients. Due to the

thruster fuel limitation, the GRACE orbit may not be maintained to keep the

uniform ground tracks all the time and the non-uniform ground tracks may be

unavoidable for certain mission period. To analyze the impact of the non-uniform

ground tracks on the gravity solution, numerical simulations were performed with

four different ground track patterns.
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Figures 6.10 through 6.13 show the ground tracks for different periods and

altitudes. An orbit trajectory was integrated for one-year period and then four time

spans were selected. The separation angle was 2° and those ground tracks

represent the trajectory of the midpoint between the two satellites, which is nearly

identical to the trajectory of the individual satellites. Each span has a 15-day

period and a (70x70) gravity model with DTM atmospheric model was used to

integrate the trajectories. All spans have 229 orbit revolutions.

The initial orbit period, Span1, has a 15-day repeat period as shown in

Figure 6.10. This period has even ground track spacing of 1.5°. Its altitude was

452 km. As the altitude changes, the orbit repeat period deviates from the initial

15-day period. Figure 6.11 shows the ground track of Span2, which has an initial

altitude of 446 km. The ground track spacing is not even, and it has a 3-day (47

revolutions) main repeat period with a 5-day sub-repeat period. The maximum

spacing (longitude gap size) is about 4°. Span3 in Figure 6.12 has an initial

altitude of 434km and shows a 3-day repeat period. The ground tracks are

overlapped every three days and the gap size is about 8°. Span4 in Figure 6.13 has

an initial altitude of 421km and shows an intermediate uniformity of the ground

track spacing between Span1 and Span2. The gap size is about 2°. Since the

minimum wavelength of the degree 70 sectorial coefficient is 5.14°, and one can

expect that Span3, whose gap size is larger than the minimum wavelength, may

degrade the gravity solution.
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Figure 6.10 Ground track of Span1 (452km)
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Figure 6.11 Ground track of Span2 (446km)
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Figure 6.12 Ground track of Span3 (434km)
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Figure 6.14 shows the degree error variances of zonal, sectorial, and

tesseral terms for the four spans. The results from Spans 1, 2, and 4 have nearly

the same level of accuracy but Span3 has large degradation in all terms. In the

sectorial terms, Span3 shows a large degradation in the high degrees. A peak

around the degree 46 represents the fact that the minimum wavelength of the

degree 46 sectorial coefficient is the same as Span3's gap size of 8°. However, the

zonal terms of Span3 has a large degradation in the low and mid degrees and this

may be due to the interaction between the high degree sectorial and low degree

zonal terms. The tesseral terms have the similar behavior as the sectorial terms

since the near sectorial terms, which are close to the sectorial ones, are included in

the tesseral terms.

As shown in the figures, a uniform ground track is preferred for the

gravity estimation. Otherwise, it is safe to minimize the longitude gap size as far

as the thruster fuel is allowed. If a large longitude gap is unavoidable, the use of a

priori information at the previous estimation period can be utilized to prevent the

degradation. Alternatively, we might extend the solution span beyond 30 days

until a satisfactory coverage is obtained.

6.2.4 Inclination

Due to some restrictions on the launcher system, the GRACE orbit

inclination may not be a perfect polar orbit. The non-polar orbit does not provide

complete coverage of the sphere with data. The polar gaps, which are not covered
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by ground tracks of the satellite orbit, have the size of 2 × (i - 90)°, where i is the

inclination. These gaps may degrade the accuracy of global gravity estimation. To

quantify this effect, numerical simulations were performed for different

inclinations ranging from 83° to 90°.

The impact of the polar gaps depends not only on the gap size but also on

the estimated gravity size. If the polar gap size is relatively small with respect to

the maximum gravity size or the minimum wavelength, it may not degrade the

gravity solution significantly. The minimum wavelength of the gravity harmonics

is given by (360/Nmax), where Nmax is the maximum degree. To analyze this

relationship, three sets of simulations were performed with different gravity sizes,

(60×60), (99×99), and (120×120). For each set, three or four inclination cases

were analyzed by using the gravity coefficient difference and predicted geoid

error.

Table 6.1 Altitudes for each inclination and gravity field size

Inclination (60××××60) (99××××99) (120××××120)

i = 83°°°° 445 km 428 km N/A

i = 87°°°° 451 km 435 km 448 km

i = 88.5°°°° N/A 437 km 450 km

i = 90°°°° 456 km 440 km 453 km

Slightly different initial altitudes were used for each inclination to fulfill a

repeat orbit condition and Table 6.1 lists the altitude of each case. The maximum
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altitude differences range from 7km to 11km. In Section 6.2.2, the change of

gravity estimation accuracy along the altitude is discussed with the wide altitude

range, from 300km to 450km. Considering the size of its gravity accuracy

difference, one can assume that these small altitude differences do not impact the

comparison study significantly.

Table 6.2 Simulation conditions for each gravity field size

(60××××60) (99××××99) (120××××120)

Data Span 30 days 14 days 16 days

No. of orbit revolutions 459 215 245

Min. gravity wavelength 6° 3.6° 3°

Table 6.2 lists the observation data spans, the number of revolutions

during those spans, and the minimum gravity wavelength of each gravity field

size. The minimum data span should be long enough for the number of

revolutions to be greater than 2×Nmax . This is in order to provide enough sampling

for the sectorial terms, which depend on the longitudinal gravity variation. The

data spans were selected to be close to the minimum spans. In the case of the

(60×60) cases, a longer 30 day data span was used to minimize other effects, e.g.

resonance at a certain altitude. The separation angle was 2°, and the accelerometer

and SST noises were applied. The 1-cpr, tangential, and the low-low empirical

parameters were adjusted.
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Figure 6.15 represents the gravity recovery accuracy of the (60×60) cases

with degree difference variance, zonal and tesseral degree difference variances,

and the geoid height error predicted from the solution covariance. Sectorial degree

difference variances were analyzed as well, but they are not presented since the

accuracy level differences are not significant.

The 83° case shows a better accuracy than the others do mainly due to its

better tesseral coefficients accuracy. This better accuracy can be explained by the

increase of the measurement data density. A lower inclination orbit has a higher

data density than a higher inclination has due to a less coverage area with the

same period. A simple equation can be used to quantify the data density increase.

The 83˚  case has 14 % higher data density than the 90˚ case, and the 87˚ case has

5 % higher data density. This type of improvement by non-polar orbit is identified

by other investigators who analyzed gradiometer measurements [39,61,76].

Another reason can be a better measurement geometry of the low inclination

orbit. The angle between the two line-of-sight vectors, one from the ascending

orbit and the other from the descending orbit, is dependent of the inclination. This

measurement crossover angle of the low inclination orbit is larger than that of the

high inclination orbit. The larger crossover angle may provide a better

observability for the gravity estimation.

The zonal accuracy of the 83˚ case is much worse than that of the others.

This can be explained by the fact that the zonal terms solely depend on the

latitudinal gravity variation. The lack of data at certain latitude region, i.e. the

polar gaps, degrades the zonal coefficient accuracy. The minimum wavelength of

the (60×60) gravity field is 6˚, and it is much smaller than the gap size of the 83˚
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inclination, 14˚. The 87° case does not show a significant degradation since the

minimum wavelength is not smaller than the polar gap size, 6°.

Mackenzie [45] explained this zonal coefficient degradation by using the

inclination function F inmp( ) of Kaula's equation [33]. The high frequency part of

the zonal inclination function is generally greater as the orbital inclination is close

to 90°. The high frequency range-rate signal due to the zonal coefficients

increases as the inclination increases. Under the same noise level, a high

amplitude signal provides a better observability and a better gravity solution. In

other words, the accuracy of the high frequency zonal coefficients will be

degraded for a low inclination orbit.

To identify the geographically correlated errors, the error level of the

geoid height was computed from the solution covariance. The fourth of Figure

6.15 shows the RMS of the geoid height error along the latitude. The 83° case has

a lower error level in the mid-latitude region but has a significant degradation in

the polar regions. As like the degree difference variances, the 87° and 88.5° do

not show significant degradation due to their relatively small gap sizes.

Figure 6.16 shows the gravity accuracy of the (99×99) solutions. In the

case of the 83°, the zonal coefficient degradation is more significant than the

(60×60) 83° case. Since this large degradation exceeds its tesseral coefficient

improvement, the overall degree difference variance of the 83° case is much

higher than that of the others. Unlike the (60×60) 87° case, the geoid error of the

87° case becomes significant in the polar region. It is because its minimum

wavelength 3.6° is smaller than the gap size 6°. Two changes from the (60×60)

results, the more degradation of the 83° case and the increased geoid error of the
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87° case, prove that the impact of the polar gap depends on the minimum

wavelength of the estimated gravity. The fact that the 88.5° case does not show

high geoid error in the polar region can be explained by its relatively small gap

size 3°.
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For more analysis on the 88.5° case, a set of (120×120) simulations were

performed, and the results are presented in Figure 6.17. Since the (120×120) 88.5°

case has the same size of minimum wavelength as the polar gap size 3°, it still

does not show significant degradation. However, its geoid error begins growing in

the polar region. Considering the 87° result change from the (60×60) to (99×99)

cases, one can expect that even the 88.5° case would show some degradation if a

much higher gravity field is estimated. Figure 6.18 shows the geoid error mapped

into the Earth surface. The geoid RMS plot of Figure 6.17 is an average of these

geoid errors along the longitude direction. The same latitude variation appears as

the RMS plot. The longitude variation is not significant except some vertical

patterns, but they can be reduced by using longer data spans or different empirical

parameterizations.

With the consideration of the impact of the polar gaps on the zonal

coefficients, the 90° inclination may be safe. Otherwise, the inclination should be

selected for the minimum wavelength of the estimated gravity field to be greater

than the polar gap size.
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Figure 6.18 Geoid errors predicted from (120x120) solution covariance
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6.3 MEASUREMENT TYPES

6.3.1 Low-Low SST Measurement Type

The primary observable of the GRACE mission is the biased-range, which

is derived from the phase measurements of the two low satellites. The range-rate

and range-acceleration measurements are then obtained by the numerical

differentiation of the biased-range. Most of the numerical simulations in this study

used the range-rate measurements for the gravity estimation. However, to prepare

the use of range measurements in the actual mission, all the simulated SST noises

were generated as the range noise and then differentiated to get the range-rate

noises. With this approach, the correlation between the range and range-rate

measurement noises makes it possible to compare the two measurements

quantitatively. This type of the consistency is different from the previous studies

[65], where the two noise types are not correlated. This section compares the

characteristics of the range and range-rate measurements by numerical

simulations and signal analyses.

One of the crucial factors determining the range-rate measurement

characteristics is the way of differentiation. In the actual GRACE mission, a

sophisticated differentiation filter may be used [71] to reduce the distortion during

the conversion from the range to the range-rate. However, it is under development

at this moment and further study is necessary for its optimal use. In this study, the

no-error range-rate measurements were computed by using the range-rate

equation of (2.25). This range-rate measurement does not include any numerical
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errors due to the differentiation, and its quality may be better than the actual

range-rate measurement. However, the simulated range-rate noise is obtained

from the range by the numerical differentiation. The total range-rate signal is a

sum of the no-error signal and the differentiated range noise signal. The

comparison results can be changed if a different type of filtering is applied. In

addition, the numerical differentiation introduces extra noise, and this makes the

simulation results be pessimistic.
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Figure 6.19 Time series of range and range-rate observations

Figure 6.19 shows the time series of the typical range and range-rate

signals. The orbit altitude is 450 km with the orbit period of 5500 seconds. The

inclination is 87° and the separation angle is 2°. The orbit eccentricity is 0.001.

The range signal has the amplitude of 1 km with the mean value of 239 km. Its
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dominant signal is 1-cpr (cycle-per-revolution) component mainly due to the orbit

eccentricity. Since the time scale is short, a secular effect, which is dominant in

the long term, is not shown in the graph. The range-rate signal has the amplitude

of less than 1m/s, and 1-cpr signal is dominant. Two-cpr signal, which is due to

the Earth oblateness, appears as well. The range-acceleration, which is not shown

in the figure, has the amplitude of 1mm/s2.

These measurement types can be better compared by analyzing their

spectral components. In spectral domain, the differentiated signal amplitude

becomes a multiplication of original signal amplitude and an angular frequency

2πf( ), where f is a linear frequency. Upon this rule, the differentiation process

amplifies the high frequency signals 2πf > 1( )  but reduces the low frequency

signal 2πf < 1( ) . Comparing the ratio of the high and low frequency signals, one

can expect that the range-rate have more high frequency signal than the range but

less low frequency signal.
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Figure 6.20 Amplitude spectrum of range, range-rate, and range-
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Figure 6.20 compares the amplitude spectrum of the range, range-rate, and

range-acceleration signals.  As predicted by the analytic theory, the range-rate

amplitude is close to the multiplication of the range by 2πf( ) and the range-

acceleration is the multiplication by 2
2πf( ) . With the 5500 seconds orbit period,

1-cpr frequency is about 0.001 rad/sec. The 1-cpr magnitude of the range-rate is

about 1m/s and close to the multiplication of the range 1-cpr magnitude by the 1-

cpr frequency, i.e. 103m × 0.001 rad/sec. The same relation is applied to the

range-acceleration over the range-rate. Since the amplitude slope is affected by

this amplification, the high frequency signal reduction is most significant in the

range spectrum. The range has a strong signal at the low frequency but the range-

acceleration has a relatively strong signal at the high frequency.

A strong signal at a certain frequency range does not imply a better gravity

recovery at that frequency range. Instead, the gravity recovery accuracy is

affected by the signal to noise ratio (SNR) between the gravity signal and the

noise. The noise consists of the measurement noise and dynamic noise, and the

latter is due to the orbit error and unknown force models. Of interest is the change

of the noise amplitude as well as the signal amplitude along the frequency.

In the case of the range measurement processing, different measurement

error characteristics should be considered. In Chapter 3, the choice of range-rate

low-low empirical parameters is explained by using Hill's equations. Unlike the

range-rate perturbation, the range perturbation includes a quadratic term (t2) and it

should be included in the empirical parameterizations as

ρ ρobs nom A Bt Ct E Ft u G Ht u− = + + + +( ) + +( )2 cos sin (6.2)
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where C  is the quadratic empirical parameter. Inclusion of this parameter

improves the gravity solution of the range measurement case, but it does not

improve the range-rate solution. A cubic empirical parameter (t3) was also

experimented for the range measurement, but it does not improve the gravity

solution. These facts prove that the selection of the empirical polynomial orders,

linear for the range-rate and quadratic for the range, is appropriate to handle the

SST errors.

To fully incorporate the dynamic noise, e.g. orbit error, full numerical

simulations are necessary instead of the analytic or semi-analytic method, where

the orbit error is neglected. Several sets of numerical simulations were performed

for the estimation of (50×50) gravity fields by using 7 day range and range-rate

measurements. The range-acceleration was also examined, but its high

dependency on the nominal orbit accuracy restricts its application. If the nominal

orbit is very close to the truth orbit, e.g. the truth gravity field as the nominal

under no accelerometer errors, the range-acceleration solution is better or

equivalent to either the range or the range-rate solution. However, in conventional

cases, e.g. an inaccurate nominal gravity field and the presence of the

accelerometer errors, its solution is much worse than the others are. This fact can

be explained by the lack of the low frequency signal in the range-acceleration.

Proper use of the range-acceleration requires a further study, and it is not covered

in this study.
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Figure 6.21 Comparison of range and range-rate gravity solutions

(with and without low-low empiricals)

Figure 6.21 compares two sets of (50×50) gravity solutions and each set

includes the range and range-rate solutions. One set is obtained by adjusting the

dynamic empirical parameters only, constant and 1-cpr parameters. The other set

is obtained by adjusting both the dynamic and low-low empirical (LLB)

parameters. None of the SST and accelerometer errors was applied.

Without the low-low empiricals, the range solution is far better than the

range-rate solution, especially in the low degree (frequency) region. After

adjusting the low-low empiricals, the improvement of the range-rate solution is

greater than that of the range solution, so that the two solutions now have the

same level of accuracy. It implies that the low-low empirical parameterization is

more effective on the range-rate solution. This different effectiveness can be

explained by analyzing the signal residuals before and after applying the low-low

empiricals. The signal residual (O-C) is the difference between the simulated
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(Observation) and nominal (Computed) signals, where the latter is generated from

the updated gravity and orbit parameters.
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Figure 6.22 shows the range residuals before and after the low-low

empirical parameterizations. Figure 6.23 shows the range-rate residuals. As

predicted from Hill's equations, the range residual shows a strong secular behavior

or drift without the low-low empiricals, but the range-rate does not show

significant drift. The strong secular behavior of the range residual makes it

difficult to remove by adjusting the low-low empirical parameters. Even after

adjusting the low-low empiricals, the range residual still has some drift. The arc

lengths of the low-low empiricals were 45 minutes (coefficients A, B, C) and 90

minutes (E, F, G, H). In general, a dense parameterization is necessary to adjust

this type of strong drifts, but this causes more discontinuities at the arc points. For

example, 45 minute arc length yields 31 (=32-1) discontinuities for one day. Since

the gravity signal is a continuous quantity, this kind of discontinuity degrades the

gravity solution and it should be minimized. Series of simulations were performed

with different arc lengths, but no improvement was achieved. Another type of

parameterization, e.g. smooth filtering or no discontinuities, may be helpful for

this problem.
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on the range SNR
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Figure 6.25 Effect of the low-low empirical (LLB) parameterizations

on the range-rate SNR

This parameterization effectiveness can be explained by the signal-to-

noise ratio (SNR) between the gravity signal and the residual. Figures 6.24 and

6.25 show the range and range-rate SNR before and after the low-low empirical
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parameterizations. Before the low-low empirical parameterizations, the range

shows a higher SNR than the range-rate over all frequency range. After the

parameterizations, very low frequency part (< 0.5 cpr) of the range SNR is

increased but the other frequency part is same or even lower than before. The

decrease of the high frequency SNR is due to the inaccurate low-low

parameterization. Unlike the range SNR, the range-rate SNR is increased over all

frequency range after the parameterization.

Even without the low-low empiricals the range has positive SNR (dB)

values over almost all frequency range and has a higher SNR than the range-rate

especially at the low frequency. Since the low-low empirical parameterization is

applied to only the very low frequency noise (≤ 1 cpr), one can expect that the

contribution of the low-low empiricals on the range is not as much as the

contribution on the range-rate.
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Figure 6.26 Range and range-rate solutions when the SST and

accelerometer errors are applied
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When the actual errors are applied, the range solution is more affected by

the errors than the range-rate solution is. Figure 6.26 compares the range and

range-rate solutions when all the SST and accelerometer errors are applied. The

range solution is slightly worse than the range-rate solution over all the degrees.

Considering the incomplete low-low empirical parameterization on the

range measurements, one can expect that a better way of the empirical

parameterization may improve the range solution. It is noted that these

comparison results are subject to the differentiation filtering method and the

empirical parameterizations. Instead, this study can be used to develop or select

the differential filter and empirical parameterization.

All the gravity estimation procedures have been developed for using either

the range or range-rate. At this moment, it is not necessary to decide which

measurement type should be used in the actual mission. At the initial mission

period, both measurements would be processed and their gravity solutions would

be compared to decide which measurement type is better for the gravity recovery.

6.3.2 Combination of GPS and SST Information

Since the SST measurement is the relative distance between two satellites,

it does not provide enough information to estimate the absolute states of both

satellites. This singularity makes it necessary to use the GPS measurements as

supplements during the estimation process. The GPS and SST measurements are

used to make a GPS information matrix and a SST information matrix,
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respectively. Due to lower accuracy of the GPS measurements, the GPS matrix

contains a less accurate orbit and gravity information than the SST matrix does

and it is mainly used to mitigate the singularity of the SST information. Since

most singularity of the SST information is contained in the estimates of orbit

initial conditions, the gravity coefficients can be estimated solely from the SST

matrix without the GPS information as long as the orbits are not estimated.

However, the gravity solution is closely related to the orbit error, and the SST

only gravity solution is less accurate than the combined solution. It is necessary to

determine the orbit and gravity simultaneously for the best gravity recovery.

All the simulations in this study combine the same size of the GPS and the

SST information matrices. However, it seems possible that a smaller size GPS

information matrix could be used to save computing time since the GPS

information does not contain the same high frequency gravity information as the

SST. Series of numerical simulations were performed by combining a (70×70)

SST information matrix with a (60×60) GPS matrix by changing various

simulation parameters.

As for the usual numerical simulations, this case used the 100% EGM96

clone gravity field as a nominal gravity field. The clone gravity fields were

generated by using the covariance matrix of the truth field (EGM96) as described

in Section 3.2. The deviation from the truth gravity coefficients can be controlled

by scaling the covariance matrix but no scaling is applied for the usual clone. The

percentage numbers (100%, 10%, and 0%) represent the coefficient difference

ratio between the truth and clone gravity fields. The 100% means that the

coefficient difference level is the same as the uncertainly level (1σ) of the truth
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one. The 10% means the covariance level is reduced to one-tenth of its original

value and its clone gravity field is much closer to the truth one than the 100%

clone.
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Figure 6.27 Gravity estimates by combining (60××××60) GPS and (70××××70)

SST information matrices (* uses (70××××70) GPS) with

different nominal gravity fields

Figure 6.27 shows the four simulation results with the different nominal

gravity fields. The first case (100% difference. clone*) is the standard one by

combing the same sizes of the GPS and SST matrices. The second through forth

ones (100%, 10%, 0% difference. clones) use the GPS information matrix of the

(60×60) gravity field, and the second case shows more than an order of magnitude

degradation. The third case (10% difference clone) uses a more accurate nominal

gravity field and shows the more accurate solution than the second one. The
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fourth one (0% difference clone) uses the same truth gravity field as the nominal

field and produces nearly the same accuracy as the standard results.

These results imply that the estimation accuracy depends on how close the

nominal dynamic model is to the truth model. A more accurate dynamic model

yields a more accurate gravity solution. However, the standard simulations, which

combine the same size of the GPS and SST information matrices, hardly depend

on the accuracy of the nominal gravity field. In other words, a more accurate

nominal gravity does not produce a better gravity solution in the standard

simulations. It is related to the robustness of the estimation process. The standard

case, i.e. the same size of the GPS and SST matrices, is a more robust estimation

than the mixed-size cases. The 10% and 0% cases show a large degradation in

degree 2 since lack of the gravity signals between degree 61 and 70 mainly affects

the J2 signal.

In real world, the 0% difference clone or the true gravity field is not

available, and an alternative gravity field, which is close to the true gravity field,

e.g. 10% difference clone, should be used instead. After first several months from

the GRACE mission, a gravity estimate from the GRACE mission will be

available and this may be the closest one to the true gravity field at that time. The

level of this GRACE tuned gravity field would be equivalent to the results from

the (70×70) GPS and the (70×70) SST matrices. The question is whether this

gravity field is close to the true field for utilizing the smaller size of GPS matrix

or not. Another simulation was performed with the GRACE tuned gravity as the

nominal gravity field instead of the clones. With this improved gravity, the

combined solution with the (60×60) GPS and the (70×70) SST matrices was
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nearly identical to the standard one. Therefore, it is possible to use a smaller size

of the GPS information matrix after an improved gravity field is obtained.

With these results, the following estimation procedure may be planed for

the gravity estimation. The gravity field will be estimated every one month during

the GRACE mission, but the estimation procedure may be different for three

periods. During the first several months, full-size GPS information matrix, i.e.

same size as the SST matrix, needs to be produced. This process will provide a

substantially improved gravity field, which is close to the true Earth gravity field.

With this accurate nominal gravity field, several types of processing may be

performed with the different sizes of the GPS information matrices. This

experiment determines the minimum size of the GPS gravity field to obtain the

equivalent level of the gravity solution as the standard one. The third processing

period would use that minimum size GPS matrix and it would save substantial

amount of computing time.

6.4 SPECTRUM OF THE SST SIGNAL

This section describes the spectral analysis of the inter-satellite signals in

order to analyze the effect of some non-gravitational force related errors on the

gravity recovery. In order to analyze the relationship between the non-

gravitational force related errors and specific gravity coefficients, e.g. resonant

terms, it is necessary to identify resonant terms in the GRACE orbit. As for other

near Earth satellites, the GRACE satellites would experience large perturbations
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caused by the resonance of the Earth gravity force. This effect will occur when

the secular rates of the arguments, which are in some terms of Kaula’s disturbing

function, become so close to zero that their periodic variation could be more

significant [33]. The frequency function may be given by

˙ ˙ ˙ ˙ ˙ψ ω θnmpq n p n p q M m= −( ) + − +( ) + −( )2 2 Ω (6.3)

where

ω = argument of perigee

M = mean anomaly

Ω = right ascension of node

θ = right ascension of Greenwich

n, m = degree and order

p = inclination function variable (0≤ p ≤ n)

q = eccentricity function variable (-∝≤ q ≤ ∝)

A deep resonance occurs if this frequency is equal to zero and a shallow

resonance occurs if it is close to zero. The periodic perturbation with an (nmpq)

index combination contributes to the total perturbation as follows [56]

Tnmpq

nmpq

= 2π
ψ̇

(6.4)

Since the orbit elements vary along the altitude, the shallow resonance period

varies along the altitude.
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Figure 6.28 Resonance periods for different resonant orders

and altitudes

Figure 6.28 shows the variation of the resonance period along the altitude.

The deep resonance occurs at the two altitudes, 250 km and 540 km. Since both of

the altitudes are out of the GRACE altitude range, between 300 km and 500 km,

the GRACE satellites would avoid such a big perturbation. The numbers, one

through five, represent the resonance order. The primary order is between 15 and

16, and the other orders are the integer multiples of the primary order. For

example, at 450 km, the order three resonance, which is due to the order 46

gravity coefficients, has a period of ten days, while the others have less than five

day period. This implies that a ten-day arc length is necessary to estimate the

order 46 coefficients at 450 km. However, a shorter arc length is preferred since it

provides better orbit fit and enables more efficient concurrent processing.

Therefore, the degradation of the order 46 coefficients may not be avoided with a



232

short arc-length. Instead, the order 46 coefficients estimated at the higher altitude

could be used as a priori value at the 450 km. These curves enables one to predict

which gravity coefficients would have low observability at a specific altitude.

Most of the numerical simulations in this study used one-day or shorter

arc-lengths; one day for initial conditions and several hours for empirical

parameters. Extensive numerical simulations were performed by changing the arc-

length up to five days. The longer arc-lengths were applied for not only the initial

conditions but also the empirical parameters. However, these long arc-lengths

degraded the orbit accuracy, and the gravity improvement by the longer arc-

lengths was not significant in most cases. With the consideration of actual

computing time, the short arc-length is preferred since it enables one to process

multiple days of observations simultaneously.

To examine the effect of a specific set of gravity coefficients on the SST

signals, two SST observation time series were generated, and then differentiated.

One was generated with a two-body term only and the other was generated with

the two-body term plus a specific term, e.g. J2 or resonant terms. One-day orbit

with 451-km altitude was analyzed.
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Figure 6.29 SST range-rate signal spectrum due to several sets of

gravity coefficients

Figure 6.29 compares the range-rate signal spectrums due to J2, order 10,

order 16, and order 46. The GRACE orbit has the first order resonance near order

15. Most of the 1-cpr (cycle-per-revolution) signals are caused by the orbit

difference. Beside the 1-cpr signal, the 2-cpr signal of the J2 case shows a high

magnitude. The order 15 case shows a tone signal, which has the peaks at N-cpr

frequencies, e.g. 2-cpr, 3-cpr, etc. Its very low frequency peak (3 days period)

corresponding to the resonance period will be discussed later. The order 46, which
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is the third resonance order, has similar tone signals as the order 15 case. On the

other hand, the order 10 case, which is a non-resonant term, has peaks, which

have the offsets from the N-cpr frequencies, and do not have exact or close tone

frequencies. The presence of this offset is a major difference between the resonant

and the non-resonant signals. The numerical simulation in Chapter 5 with the

accelerometer misalignment error shows the large degradation in the resonant

terms. This degradation is due to the similarity between the misalignment error

and non-gravitational signals. As shown in Chapter 3, the non-gravitational

accelerations, i.e. atmospheric drag and radiation pressure, have the tone signals

at N -cpr frequencies. Therefore, the misalignment error has the similar

characteristics as the resonant term induced signals, and this similarity degrades

the accuracy of those coefficient estimates.

The existence of the N-cpr signals in the resonant terms can be explained

by analyzing the frequency function ψ̇ nmpq  in (6.3). Roughly speaking, a satellite

rotates the Earth mo  times per day, where mo  is a primary or lowest resonant

order, e.g. 15. The mean anomaly frequency Ṁ  may be approximated as an

integer multiple of the Earth rotation rate θ̇  and mo :

˙ ˙M mo≈ θ (6.5)

Considering the slow variations of the argument of perigee and right ascension, ω̇

and Ω̇  can be ignored in the frequency function and θ̇  may be replaced with Ṁ

as follows:
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˙ ˙ ˙ψ θnmpq kM m≈ −

         = −






k
m

m
M

o

˙ (6.6)

where k n p q= − +( )2  represents an integer number. The ratio m mo/  becomes

an integer for the resonant term whose order m is the integer multiple of the

primary resonant order mo . In this case, the frequency ψ̇ nmpq  becomes an integer

multiple of Ṁ , in other word, N= k m mo−( )/  cpr. This frequency causes the N-

cpr peaks in the SST signal spectrum. On the contrary, k m mo−( )/  becomes a

non-integer value for the non-resonant terms, so that ψ̇ nmpq  has an offset from the

N-cpr frequency.

Figure 6.30 shows the amplitude spectrum of the range-rate signal

sampled at each order and frequency. An analytic method developed by Sharma

[65] was used to reduce the computation time, instead of the numerical method

used for the Figure 6.29. Each horizontal bin represents 0.5-cpr frequency region,

and the horizontal intervals are [0, 0.25], [0.25, 0.75], [0.75, 1.25], … cpr. The

difference between the resonant signal (around order 15 and 30) and the non-

resonant signal (around order 10 and 23) clearly shows that the resonant signals

have strong N-cpr signals. Very low order terms (< order 4) have similar tone

signals, and their estimation accuracy also depends on the accelerometer/SST tone

errors.
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6.5 EXPECTED GRAVITY RECOVERY ACCURACY

This section describes the expected gravity accuracy from the GRACE

mission. As described in the previous sections, the gravity recovery accuracy

depends on various parameters and it is not easy to select one gravity estimation

results for discussing the expected accuracy. Among various results, one typical

simulation result is selected to discuss the expected accuracy. A (120×120)

gravity field was estimated by using 32 day measurements. The orbit conditions

include 88.5° inclination, 2° separation angle, and 448km initial altitude. The

inter-satellite oscillator, system, and multipath noise were applied. The

accelerometer random, attitude, and misalignment errors were applied. The

empirical parameters were adjusted. With the assumption that all the significant

error sources were applied in the simulations and an optimal estimation method

was used, one can predict the estimated gravity accuracy from the simulation

results.

The expected geoid height errors predicted by these numerical simulations

are presented in Figure 6.31. The geoid height error is obtained by multiplying the

degree difference variances with the Earth radius Re. It shows up to 1000 times

improvement over the EGM96 that represents the current knowledge level of the

Earth gravity field.
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Figure 6.31 Expected geoid height error predicted by

numerical simulations

A worst case is performed without any accelerometer measurements of the

two satellites. However, the low-low SST measurement is still available and the

accelerometer measurement is replaced by a nominal non-gravitational model.

DTM atmospheric model was used for the truth model and MSIS was used for the

nominal model. The solar and earth radiation forces are applied with 5% errors of

reflectivity, Earth albedo and emissivity parameters. The low-low SST error

model is the same as the nominal. This less accurate non-gravitational information

degrades the gravity solution by two order of magnitude. This degradation can be

reduced using more accurate non-gravitational model. Another consideration is

the loss of the low-low SST measurement but this result is not plotted. This is the

same as the usual high-low SST mission with two satellites and accelerometers. In

this case, the gravity improvement is confined to very low degrees (<30).
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Table 6.3 Geoid height error predicted by the numerical simulation

- the nominal case (unit = cm)

Harmonic

Degree

Cumulative

 (from n=3)

Per Degree Cumulative

 (EGM96)

(from n=3)

Per Degree

(EGM96)

 n = 2 -    0.02 -    0.05

3 ≤ n ≤ 10 0.002 < 0.001 1.76 < 0.97

11 ≤ n ≤ 40 0.009 < 0.002 10.93 < 2.66

41 ≤ n ≤ 70 0.033 < 0.012 18.07 < 2.78

71 ≤ n ≤ 100 0.183 < 0.060 24.21 < 3.25

101 ≤ n ≤ 120 0.657 < 0.239 26.71 < 3.25

The geoid error of the nominal case is cumulated up to degree 10, 40, 70,

100, and 120. These values are listed in Table 6.3. The degree 2 value is excluded

from those cumulative values since its error level is usually much higher than the

other degree terms and subject to change. The maximum per-degree errors are

also presented and compared with the EGM96 error levels, which represent the

current knowledge level of the Earth gravity field. About three order of magnitude

improvement can be obtained over the EGM96 accuracy in the low degrees and

one order of magnitude can be obtained in the high degrees. To the extent that the

error sources assumed in these simulations represent the actual errors, the

GRACE mission will provide a significant improvement in the Earth gravity field

knowledge.
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7 CONCLUSIONS

7.1 SUMMARY AND CONCLUSIONS

This study analyzed the effect of the error sources on the performance of

the GRACE mission. Most of the significant error sources were described and

implemented in the simulations. With these error models, extensive numerical

simulations were performed to quantify the effect of the error sources on the

gravity and orbit estimation.

Formulations for processing the GPS and SST measurements were

derived. With the dual one-way ranging system, the oscillator noise, which is the

most significant error source on the microwave ranging measurement, can be

effectively reduced. This enables the measurement of the biased-range between

the two GRACE satellites with an unprecedented accuracy. Processing the GPS

double difference measurements was described as well. The measurement partial

equations were derived, which were implemented in the MSODP orbit

determination program and used for the numerical simulations. Several empirical

parameters were applied to reduce the dynamic and measurement model errors.

The dynamic force models, the gravitational and the non-gravitational

models, were described and their signal characteristics were analyzed. Computing

the optimal weighting of the information equations was described. To overcome

the available computational limit, a semi-analytic method was used for predicting

the geoid error spectrum in the high degree field above degree 100.
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The error models of the inter-satellite measurements were described. All

the error models were developed as a range error time series so that either the

range-rate or range-acceleration error time series can be easily obtained by

numerical differentiation. This range error approach makes it possible to compare

the range and range-rate measurement characteristics more accurately. The other

SST errors, which were related to the actual data processing, but not included in

the simulations, were also described. These errors included the time tag error and

the instantaneous range correction. Both of the errors are closely related to the

pre-processing so that their implementation should be done simultaneously with

the pre-processor development. The accelerometer error models included the scale

factor error, bias error, random noise, attitude error, misalignment error, and CM-

offset error. The estimation parameters used for adjusting these errors were the

scale factors and biases. The simulation results prove that these parameters can be

estimated with a sufficient accuracy.

Series of the extensive simulations were performed to analyze the impact

of the various simulation parameters, which included the orbit selections,

measurement types, and so on. The orbit selection issues include inclination,

altitude, and separation. The effect of the orbit parameters was analyzed by

numerical simulations and the semi-analytic method. The difference from the

previous studies is the consideration of the instrument noise level change due to

the orbit parameters, e.g. altitude and separation. This kind of comprehensive

error modeling enables more realistic sensitivity studies. The simulation results on

the inclination quantified the effect of the polar gap on the gravity estimation. The



242

polar gap size should be smaller than the minimum wavelength of the estimated

gravity field. Therefore, the inclination selection depends on the maximum

gravity field to estimate. In case of the separation distance analysis, the SST noise

level increase for a larger separation should be considered. This type of

measurement noise increase also affects the altitude analysis, where the

accelerometer noise increase becomes significant at the lower altitude.

The comparison between the range and range-rate measurement is also

described. With current empirical parameterizations, the range-rate solution is

better than the range solution. The refinement of the empirical parameterization

and differential filtering may affect the analysis.  The combination of the GPS and

SST information matrices is studied by applying a smaller size of the GPS matrix.

The orbit resonant characteristics are examined for better understanding of its

effect on the SST measurements.

To the extent that the error sources assumed in these simulations represent

the actual errors, the GRACE mission will provide a significant improvement in

the Earth gravity field. The presented simulation results are useful for design and

trade studies and can be a guide for developing data processing methodologies.

7.2 RECOMMENDATIONS

The actual size of the gravity estimate by the GRACE mission will be

greater than that of the current simulations. A parallel linear system solver is

being developed at the UT/CSR, and it will make it possible to solve a larger
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gravity field with less computing time. The high frequency feature of the gravity

signal and measurement noise can be well analyzed with this capability.

Estimating the time varying gravity field with a high precision would be a

challenge since the satellite altitudes and ground tracks are changing during the

estimation interval. The measurement noise characteristics and the other dynamic

forces are changing as well. The impact of those variations on the gravity estimate

needs to be examined to extract the gravity variation signal accurately.

Combination of the GRACE gravity data with the terrestrial data can be another

topic. The combination of the GPS and SST measurements needs further study,

e.g. optimal weightings and GPS gravity sizes.

The measurement noise model can be appropriately implemented with the

development of the pre-processor for handling the actual measurements. More

realistic noise models are helpful to develop a more proper empirical

parameterization. The accelerometer measurement processing is a critical part of

the mission, and the current dynamic approach might be improved by applying

another approach. Comprehensive models on the GPS measurements are

necessary to process real GPS measurements. More simulations on the instrument

failure, e.g. accelerometer failure, are helpful to analyze their effect on the

mission.
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APPENDIX A SKETCH OF HILL’S EQUATIONS

A.1 HILL’S EQUATIONS

The GRACE satellite’s nominal orbit is near circular and an analytic form

of perturbation equation is available for the near-circular orbits. For circular

reference orbit with the mean motion of n ro= µ / 3 , the perturbation equation

may be given by

˙̇ ˙u nv n u fu− − =2 3 2

           ˙̇ ˙v nu fv+ =2

          ˙̇w n w fw+ =2 (A.1)

Where (u, v, w) are the perturbed components in the satellite radial, transverse,

and nominal directions. The right side terms fu, fv, and fw denote the disturbing

force in three directions. These are sometimes called Hill’s equations [32]. Small

perturbed motion in radial and normal directions are assumed, but there are no

assumptions on transverse motion.

Hill’s equations are not solvable in general. However, some analytic

solutions are available for some special cases. The homogeneous solution

represents the orbit perturbation caused by the initial condition errors. For the

initial position error u v w0 0 0, ,( ) and the initial velocity error ˙ , ˙ , ˙u v w0 0 0( ) without

perturbing forces, the solution is given by the following expressions
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For the perturbing force function expressed in a Fourier series, an analytic

solution exits. If the force function is given by

f P t Q ti i i= +cos sinω ω (i = u , v , w) (A.3)

where Pi and Qi are constants and ω  is an angular frequency. The solution

becomes [62]
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w t
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2 2ω
ωcos sin  + +nP t nQ tw wcos sinω ω  (A.4)

This is called non-resonant solution and the initial condition errors are not

considered. In addition to the applied frequency ω  signals, the solutions have the

1-cpr (cycle-per-revolution) signals. This implies that any frequency of the

perturbation causes the 1-cpr signals in the satellite motion as well as its own

frequency. It is why the 1-cpr empirical parameters are used to adjust the

mismodeled dynamic models, which have frequencies other than 1 cpr.

When the perturbing force has constant or 1-cpr components (ω ≈ 0 or ±

n), these solutions are no longer valid and another solution called resonant

solution exists for the perturbing force of

f R P n t Q n ti i ni ni= + +cos sin  (i = u , v , w) (A.5)

The solution of each term is given by

u t
n

Q R
n

P Q t n tnv u nv nu( ) = − +( ) − +( )





1
2

1

2
22 cos  

        + + −( ) + −( )





1

2
2 4

1

2
22n

P Q R
n

P Q t n tnv nu v nu nv sin  

        + +( ) +





1
2

2
2n

Q R
n

R tnv u v 

v t
n

P Q R
n

P Q t n tnv nu v nu nv( ) = + −( ) + −( )





1
3 2 4

1
22 cos  (A.6)
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        + − − −( ) + +( )
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A.2 RANGE AND RANGE-RATE EQUATIONS

The partial derivative of inter-satellite range or range-rate signal with

respect to a certain parameter, e.g. initial condition, disturbing force, or gravity

coefficient can be derived in the following way [9,45].

The nominal range ρo may be given by

ρ0 0= −( ) ⋅r r e10 20
ˆ (A.7)

where ri0  represents nominal position vector of the i-th satellite and ê0  does the

nominal line-of-sight (LOS) vector. The perturbed range ρ can be expressed in the

same way:

ρ = −( ) ⋅r r e1 2
ˆ (A.8)

The perturbed position and LOS vectors, ri  and ê , are sum of the nominal values

and the perturbed values, δri  and δê:
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r r ri i i= +0 δ

ˆ ˆ ˆe e e= +0 δ (A.9)

After substitution of (A.9) into (A.8), comparison with (A.7) yields the range

variation equation as

δρ δ δ= −( ) ⋅r r e1 2
ˆ

0 (A.10)

The range variation is the projection of relative position variation on the LOS

vector. With similar procedures, the range-rate variational equation may be given

by

δρ δ δ˙ ˙ ˙ ˆ= −( ) ⋅r r e1 2 0

     + −( ) ⋅ −( ) ⋅1

0
10 20 0 10 20 0ρ

δ δ˙ ˙ ˆ ˆr r f r r f

     + −( ) ⋅ −( ) ⋅1

0
10 20 0 10 20 0ρ

δ δ˙ ˙ ˆ ˆr r g r r g (A.11)

where ê0 , f̂0 , and ĝ0  are defined as an orthonormal triad. The first term

represents the relative velocity variation along the LOS, and the second and third

terms represent the variation along the directions perpendicular to the LOS. If the

directions of f̂0  and ĝ0  are chosen as cross-track and complete of the LOS and the

cross-track, then the second term becomes zero with the assumption of the tandem

formation. The third term contains a relatively large denominator ρ0  so that it can
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be neglected. With these assumptions, the range-rate perturbation due to perturbed

motion can be simplified as follows

δρ δ δ˙ ˙ ˙ ˆ= −( ) ⋅r r e1 2 0 (A.12)

Substitution of the analytic solutions, which are derived in the previous section,

yields the sensitivity of the range-rate with respect to a certain parameter, e.g.

initial condition error or disturbing force.

The range equation can be expressed in the local frames, which

correspond to the radial, transverse, and normal directions of each satellite [46].

Figure A.1 describes those local coordinates ĥij , where the subscript i represents

u v w, ,( ) component and j represents the j-th satellite.

ĥu1

ĥv1

ĥu2ĥv2

θ

SST1

r1
r2

SST2
ê0

Figure A.1 Local coordinate frame of each low satellite

The solution of the range equation can be written in the following form
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δρ δ δ= ( ) − ( )





⋅
==
∑∑ x xi i i i

i u v wi u v w
1 1 2 2 0
ˆ ˆ ˆ

, ,, ,

h h e (A.13)

With the assumptions of circular tandem orbits, this equation can be simplified by

δρ θ θ= +( ) + −( )u u v v1 2 1 22 2
sin cos (A.14)

where θ  represents the separation angle. The terms related to the normal direction

are cancelled since the LOS plane is perpendicular to the normal direction. The

range-rate has a similar form of equation as

δρ θ θ˙ ˙ ˙ sin ˙ ˙ cos= +( ) + −( )u u v v1 2 1 22 2
(A.15)

It is noted that u v u vi i i i, , ˙ , ˙( ) represent the perturbed quantities from the nominal

circular orbit.

Several numerical simulations were performed by the MSODP to validate

these equations. A circular reference orbit was used with two-body gravity term.

The initial position error of 1 m along the radial direction was applied. The

reference range-rate, which was computed along the reference (circular) orbit, has

zero value all the time. The perturbed range-rate time series from the analytic

solution and the numerical integration were compared. Figure A.2  shows the

range-rate difference. Time span was one day and the discrepancy grows along

time, but it has the maximum of 0.2 µm/s that is smaller than the instrument noise

level. These analytic equations are useful for predicting the range or range-rate
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perturbation due to initial condition error or measurement error as long as the

prediction time span is short.
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Figure A.2 Difference between the analytic and numerical range-rate
signals

A.3 APPLICATIONS OF HILL'S EQUATIONS

One of the applications using the range and range-rate equations is the

transfer function between the perturbing force and the range-rate perturbation. It

maps the PSD of the perturbing force into the PSD of the range-rate perturbation,

and it is useful to predict the effect of accelerometer noise on the range-rate

measurements. The relationship between the perturbed state and the perturbed

range-rate can be expressed in the following state-space form:
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ẋ x f= +A B

y x= D (A.16)

where

x = [ ]u v w u v w u v w u v w
T

1 1 1 1 1 1 2 2 2 2 2 2              ˙ ˙ ˙ ˙ ˙ ˙M

    = perturbed state vector of two low satellites

f = [ ]f f f f f fu v w u v w

T

1 1 1 2 2 2
      M

    = perturbing forces acting on each satellite

y = [ ]δρ δρ δρ δρ δρ δρ˙ ˙ ˙ ˙ ˙ ˙
u v w u v w

T

1 1 1 2 2 2
        M

    = range-rate perturbations due to each satellite’s perturbation

An analytic form of transfer function with zero initial conditions can be

computed by using the following equation [41]

G s D sI A B( ) = −( )−1 (A.17)
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Figure A.3 Transfer functions between range-rate perturbation

and disturbing forces

Figure A.3 shows the transfer function from radial and transverse

perturbing force noises to the range-rate perturbations. The perturbation due to

radial perturbation is lower than transverse noise’ but still has significant

amplitude. It means the radial motion is highly coupled with the transverse

motion. The perturbation due to normal perturbation is zero theoretically, and it

explains the previous numerical simulation results in Chapter 5 regarding the

choice of accelerometer less-sensitive axis, where the normal (cross-track)

accelerometer noise does not affect the orbit and gravity solutions significantly.

The spikes in the 1 cpr are due to the resonance, but they can be removed

effectively by applying the empirical parameters. Theoretically, the spikes have

infinite amplitude but they are bounded within some level since the orbit acts as a

filter to smooth the spikes.
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To verify this equation, a numerical simulation was performed with the

accelerometer random noise. The accelerometer with less-sensitive normal axis

was simulated so that the accelerometer random noise has same PSD in the

transverse and radial directions. Since the normal motion is decoupled from the

in-plane motion and does not appear in the range-rate equation of (A.15), the

random noise in the normal axis, which is higher than those in the other axes,

does not need to be considered. The details on these noise spectrums are described

in Chapter 5. The range-rate perturbation obtained by the numerical simulation is

compared to the one by the analytic solution in Figure A.4. Both results are

matched each other very well.
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Figure A.4 Comparison of the range-rate perturbations by

numerical simulation and the analytic solution
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Another applications of the perturbation equation may be a variation

equation of the inter-satellite range due to initial condition errors or different

accelerations on two satellites. Because of limited fuel capacity, the thrust firings

for orbit maintenance, e.g. maintain the range within a nominal level, should be

minimized. The analytic form of the range prediction is necessary to understand

the behavior and to design control algorithm.

The transfer function of Figure A.3 does not include the correlation

between frequencies. As shown (A.6), a perturbation with a frequency ω causes

the orbit perturbation at the frequency n as well as ω . This form of general

solution is obtained by submitting the general solutions in (A.4) or (A.6) into the

range/range-rate equation of (A.14). The range variation is expressed in terms of

the range perturbation partials with respect to each perturbation amplitude,

∂ρ ∂/ x , and perturbation variation, δx :

δρ ∂ρ
∂

δ ∂ρ
∂

δ ∂ρ
∂

δ ∂ρ
∂

δ ∂ρ
∂

δ= + + + +
















==

∑∑ R
R

P
P

Q
Q

P
P

Q
Q

i
i

ni
ni

ni
ni

i
i

i
i

j

N

ji u v 1,

(A.18)

where N is the number of distinctive frequencies of the perturbing forces. The

partials ∂δρ ∂/ x  are written as ∂ρ ∂/ x  for convenience. The perturbation

amplitudes are defined in (A.3) and (A.5). The partial derivatives with respect to

the perturbation acting on the leading satellite (SST1) are given by
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It is noted that, for small separation angle θ , sin /θ 2( )  is very smaller than

cos /θ 2( ) and the range perturbation behavior is mainly dominated by the

cos /θ 2( ) containing terms. The range-rate partial equations can be easily

obtained by differentiating these equations.

These analytic equations provide a quick solution for a certain

perturbation and an insight on the characteristics of the inter-satellite range/range-

rate observations. It even helps numerical simulations in design and verifications.

The range perturbation equation can be rearranged as follows:

δρ = + + + +( ) + +( )A Bt Ct E Ft nt G Ht nt2 cos sin

     + +( ) + +( )[ ]
=

∑ E F t t G H t tj j j j j j
j

N

cos sinω ω
1

(A.20)
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Any force components at a certain frequency ω j  are grouped into one j-th force.

This equation implies that the range error is the sum of quadratic and harmonic

terms. The purpose of the low-low empirical parameters is to remove the error

contribution from the observation, and then this expression (A.20) provides a

guide to an optimal set of the low-low empiricals. In this study, the coefficients of

the quadratic and 1-cpr terms, A, B, C, E, F, G, and H were estimated. It is not

realistic to estimate all the ω i  frequency terms, Ej , Fj , Gj , and Hj  for a large

number N.  In case of the range-rate observations, the perturbation equation does

not include the quadratic term, and the coefficient C is not necessary to estimate.

This set of the empirical parameters is very effective to remove the range/range-

rate error, and it proves the usefulness of this analytic approach.



259

APPENDIX B SIMULATION PROCEDURE

This section describes the procedures for the numerical simulation and the

optimal scale factor determination. The Bold capital represents the output files

from each step and the Bold-Italic capital does the input files for each step.

B.1 NUMERICAL SIMULATION PROCEDURE

B.1.1 Generation of the Truth Measurements

- To generate the truth measurement time series using the truth dynamic models.

- In actual mission, real measurements replace the output from this part.

Dynamic Models: Truth gravity (TRUEGEO)

Truth initial conditions (TRUEIC)

Truth accelerometer scale factors and biases (TRUESCA)

Atmospheric drag, radiation pressure

Measurement Models:Inter-satellite system, oscillator, and multipath noise

Output Files: SST: Noisy SST measurements (range & range rate)

ACC:  Accelerometer measurements

GPSDD: GPS double difference measurements
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B.1.2 Orbit Adjustment

- To adjust the orbit initial conditions using the GPS measurements.

Input Files: ACC, GPS DD

Dynamic Models: Nominal gravity (NOMGEO)

Accelerometer measurements (ACC)

Output Files: IC2: Adjusted initial conditions

SCA: Adjusted scale factors and biases

B.1.3 Gravity Estimation by the GPS Measurements

- To make an information matrix using the GPS measurements.

Input Files: ACC, GPSDD, IC2, SCA

Dynamic Models: Nominal gravity (NOMGEO)

Accelerometer measurements (ACC)

Output Files: IGPS: Information Matrix (DUZ or REGRES file)

       = Gravity coefficients

       + Initial conditions

       + Scale factors and biases

B.1.4 Gravity Estimation by the SST Measurements

- To make an information matrix using the SST measurements.

Input Files: ACC, SST, IC2, SCA

Dynamic Models: Nominal gravity (NOMGEO)

Accelerometer measurements (ACC)
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Output Files: ISST: Information Matrix (DUZ or REGRES file)

       = Gravity coefficients

       + Initial conditions

       + Scale factors and biases

       + Low-low empirical parameters

B.1.5 Combination of the GPS and SST Daily Information Matrices

- To combine N-daily GPS and SST information matrices and estimate a gravity

coefficients. An optimal weighting determined by the following section is used

for the relative weighting of the GPS and SST information matrices.

Input Files: IGPS, ISST

Output Files: NEWGEO : Gravity Estimate

NEWIC : Initial Condition

NEWSCA : Scale Factor & Bias Estimate

B.1.6 Comparison

- To compare the estimates with the truth.

Input Files: TTRUEGEO, NEWGEO

TRUEIC, NEWIC

TRUESCA, NEWSCA

Output Files: DDV : Degree Difference Variance

DIC : Initial condition or state error

DSCA: Accelerometer scale factor and bias error
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B.2 OPTIMAL WEIGHTING DETERMINATION PROCEDURE

B.2.1 Generation of the Truth Measurements

- To generate the truth measurement time series using the truth dynamic models.

- Identical to the generation part of the numerical simulation procedure.

Dynamic Models: Truth gravity (TRUEGEO)

Truth initial conditions (TRUEIC)

Truth accelerometer scale factors and biases (TRUESCA)

Atmospheric drag, radiation pressure

Measurement Models:SST system, oscillator, and multipath noise

Output Files: SST: Noisy SST measurements (range & range rate)

ACC:  Accelerometer measurements

GPSDD: GPS double difference measurements

B.2.2 Orbit Adjustment

- To adjust the orbit initial conditions using the GPS measurements.

Input Files: ACC, GPS DD

Dynamic Models: Truth gravity (TRUEGEO)

Accelerometer measurements (ACC)

Output Files: IC2: Adjusted initial conditions

SCA: Adjusted scale factors and biases

SST2: New SST measurements without noise
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B.2.3 Residual Computation

- To compute the SST measurement residual due to the SST and other error

sources.

Input Files: SST, SST2

Output Files: DSST: SST measurement residual time series

 after removing the low-low empirical bias and

 bias-rate

        = (SST-SST2) – low-low bias & bias-rate

LPRMS: Predicted SST Residual RMS
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APPENDIX C DEFINITIONS

C.1 POWER SPECTRAL DENSITY

There exist many variations of the definition of the Fourier transforms and

the power spectral density, and the definitions of this study follows Powers' [53].

For a given function of time, x t( ), the continuous Fourier transform (CFT) X f( )

may be defined by the expression

X f x t e dti f t( ) = ( ) −

−∞

∞

∫ 2π  (C.1)

and the inverse transform by

x t X f e dfi f t( ) = ( )
−∞

∞

∫ 2π  (C.2)

The quantities t and f represent time and frequency, respectively. For a function of

discrete time x n[ ], the discrete Fourier transform (DFT), X l[ ], may be defined by

X l
N

x n e
n

N
i l n N[ ] = [ ]

=

−
−∑1

0

1
2   π / l N= −0 1 2 1, , , ,K (C.3)

and the inverse DFT by

x n X l e
l

N
i l n N[ ] = [ ]

=

−

∑
0

1
2   π / n N= −0 1 2 1, , , ,K (C.4)
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Both x n[ ] and X l[ ] have a period of N, which is the number of samples. The CFT

X fT ( ), where T is finite time duration, is related to the DFT X l[ ] by

X f X l f
f

X lT T( ) = ( ) = [ ]∆
∆
1

(C.5)

where

∆f
T N ts

= =1 1

 
(C.6)

ts  is the sampling interval.

The two-sided discrete sample power spectrum S l[ ] may be defined by

S l X l[ ] = [ ] 2
(C.7)

The continuous power spectrum S f( )  becomes

S f S l f
f

S l( ) = ( ) = [ ]∆
∆
1

(C.8)

The amplitude at the l-th frequency A l[ ] is defined by

A l X l S f f[ ] = [ ] = ( )2 2 ∆ (C.9)

In order to reduce leakage, the Hanning data window function [53] was used in

this study:
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w t
t
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( ) = −





1

2
1

2
cos

π 
0 ≤ ≤t T (C.10)

This window function is applied to the discrete sample x n[ ] as

x n x n w nw[ ] = [ ] [ ] (C.11)

Since the application of such windows results in a reduction of the total power

present in the power spectral density, the following window correction factor was

applied to the power spectrum:

W
N

w n
n

N

= [ ]









=

− −

∑1 2

0

1 1

S l W S lw[ ] ≅ [ ] (C.12)

S l[ ] is the actual sample power spectrum at discrete frequency l. S lw[ ] is the

sample power spectrum estimated from the windowed data x nw[ ].
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C.2 DEGREE VARIANCES

In order to compare gravity recovery results, several quantities were

utilized to characterize the errors and uncertainties in the estimation of the gravity

coefficients. The degree difference variance (DDV) of n-th degree is defined by

the difference of the reference and the estimated coefficients [59]:

∆ ∆ ∆n nm nm
m

n

C S= +( )
=

∑ 2 2

0

(C.13)

where

∆C C Cnm estimate reference
 =  nm nm( ) − ( )

∆S S Snm estimate reference
 =   nm nm( ) − ( )

The subscripts n and m represent degree and order, respectively. The degree error

variance (DEV) or degree variance is defined by the elements of the covariance

matrix associated with the estimates of the geopotential coefficients:

δ δ δn nm nm
m

n

C S= +( )
=

∑ 2 2

0

(C.14)

where
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δCnm , δSnm = Standard deviation of the error in the estimates of

 the normalized geopotential coefficients

The degree error variance heavily depends on the measurement noise level, which

is specified for solving the information equations. It is very sensitive to the

weighting factors and does not give correct uncertainty level unless the weighting

factors are correct. It also neglects the correlations between the estimates of the

parameters and, as such, usually yields a pessimistic estimate of the overall error.

In the case of simulations, the reference values are known and the degree

difference variances are available. In actual situations, the reference values are not

available, and only the degree error variance is available for comparison. Of two

quantities, the degree difference variance represents an actual error level and it is

less sensitive to the weighting factors. Therefore, it is better to use the degree

difference variance as long as the reference values are available. The degree

difference variance was used in most of comparisons.

Since both the degree difference and error variances are defined for each

degree, sometimes it is useful to use a scalar quantity matched to a gravity

coefficient set. The cumulative geoid error up to degree N is defined by [60,76]

∆ ∆ ∆N e nm nm
m

n

n

N

R C S= +( )
==

∑∑ 2 2

02

(C.15)

where Re  is the Earth radius. Although it is not an absolute measure of a

geopotential coefficient error, it is one of the ways to judge gravity result easily.
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